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Abstract

This paper studies a distributed reinforcement learning problem in which a network
of multiple agents aim to cooperatively maximize the globally averaged return through
communication with only local neighbors. An asynchronous multi-agent actor-critic algorithm
is proposed for possibly unidirectional communication relationships depicted by a directed
graph. Each agent independently updates its variables at “event times” determined by its
own clock. It is not assumed that the agents’ clocks are synchronized or that the event times
are evenly spaced. It is shown that the algorithm can solve the problem for any strongly
connected graph in the presence of communication and computation delays.

I. Introduction

Distributed machine learning algorithms have drawn increasing attention recently, with some
notable examples such as distributed multi-arm bandit [1], linear regression [2], deep learning [3],
and reinforcement learning (RL) [4]. Promising applications of these algorithms are in large-scale
networks without any central controller/coordinator, including online economic networks, Internet
of Things, cyber-physical systems, and social platforms, primarily because in these examples,
collecting all information at a single point is infeasible, due to privacy issues such that agents
are not willing to share their private information, or expensive communication overhead in
maintaining such big data.

Among these distributed machine learning algorithms, there has been an ever-growing interest
in multi-agent reinforcement learning (MARL). In general, MARL problems are addressed in
three settings, namely collaborative, competitive, and a mixture of the two. In the collaborative
setting, the canonical multi-agent Markov decision process model [5, 6] appeared to be the most
basic framework, where a common reward function is shared by all agents and affected by all
agents’ joint actions. Moreover, the team Markov game can also be used as a collaborative
model, where the agents also share an identical reward function [7, 8]. Later, a more challenging
but practical setting where agents can have heterogeneous reward functions, with the goal of
maximizing the long-term return corresponding to the team averaged reward, was proposed
in [4,9–12]. Particularly, the focuses of these works are on a fully-decentralized/distributed setting,
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where no central controller/decision maker exists to coordinate the agents and maximize the
team averaged return. Instead, a communication network exists to connect the agents in which
information exchange is allowed only between neighboring agents over the network. There is also
a huge body of literature on MARL for the competitive and mixed settings [13–16], many of
which are empirical works without theoretical convergence guarantees. Here, our focus is on the
collaborative MARL with decentralized/distributed and networked agents, as in [4, 9, 17].

The work of [4] developed the first fully decentralized/distributed, synchronous actor-critic
algorithm under the collaborative setting, in which doubly stochastic matrices were used to
devise the consensus update. Such an update essentially needs the communication between each
pair of neighboring agents to be bidirectional. This confines the applicability of the algorithm
into scenarios with possibly unidirectional communication. More importantly, the requirement
of doubly stochastic matrices further restricts its extension to the cases with communication
delays and asynchronous updating, as there is no existing distributed way to devise a consensus
update using a doubly stochastic matrix in the presence of communication delays or asynchronous
updating.

Asynchronous RL methods [18–20] have gained great popularity recently as they can achieve
successful real-world applications such as games and robotics [21,22]. In these existing settings, a
large number of RL agents collect experiences in independent environments and interact with a
centralized parameter server. Compared with traditional RL algorithms, these asynchronous algo-
rithms enjoy better exploration properties and are more tolerant of computation faults; however,
they cannot be directly and easily, if not impossible, extended to fully distributed/decentralized
settings in which there is no centralized parameter server. Typical application examples of such
settings include robotic teams and drone fleets. It is also worth emphasizing that for a large
wireless network, it is difficult and sometimes impossible to synchronize all components’ clocks
over the network [23]; and that is also the case with a large-scale distributed RL network.

In this paper, we propose an asynchronous, fully distributed actor-critic algorithm using
the idea of push-sum [24,25]. In our algorithm, each agent independently decides when to take
actions according to its own clock. It is not assumed that the agents’ clocks are synchronized. The
algorithm also takes communication and computation delays into account. We show convergence
of the algorithm under linear function approximation, which is validated via simulation.

II. Problem Formulation

In this section, we introduce the background and formulation of the MARL problem with
networked agents. The problem was first proposed in [17] which provides two distributed algorithms
for synchronous case without considering any delays.

A. Networked Multi-Agent MDP

Consider a team of N agents, denoted by N = {1, 2, . . . , N}, operating in a common environment.
There is no central controller that can either collect rewards or make the decisions for all the
agents. In contrast, the agents are connected by a possibly sparse communication network
depicted by a directed graph G = (N , E), where E denotes the set of communication links. A
networked multi-agent MDP model can be defined by a tuple (S, {Ai}i∈N , P, {Ri}i∈N ,Gt), where
S is the state space shared by all the agents in N , and Ai is the action space of agent i. For
each agent i, Ri : S ×A → R is the local reward function, where A =

∏N
i=1Ai is the joint action

space. P : S ×A× S → [0, 1] denotes the state transition probability of the MDP. It is assumed
throughout the paper that the states are globally observable and the rewards are observed only
locally. Each agent’s rewards are only locally observed by itself, primarily due to privacy issues
in the sense that the agents do not have motivation to share private reward information directly
with others. Practical examples of this setting include cooperative navigation, motion planning
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of teamed robots, and dynamic operation of distributed energy resources in the smart grid; for
more examples and justifications of the setting, see [4].

The networked multi-agent MDP evolves as follows. Each agent i chooses its own action
ait given state st at time t, according to a local policy, i.e., the probability of choosing action
ai at state s, πi : S × Ai → [0, 1]. Note that the joint policy of all agents, π : S × A → [0, 1],
satisfies π(s, a) =

∏
i∈N π

i(s, ai). Also, a reward rit+1 is received by agent i after executing the
action. To make the search of the optimal joint policy tractable, we assume that the local policy
is parameterized by πi

θi
, where θi ∈ Θi is the parameter, and Θi ⊆ Rmi is a compact set. The

parameters are concatenated as θ = [(θ1)>, · · · , (θN )>]> ∈ Θ, where Θ =
∏N
i=1 Θi. The joint

policy is thus given by πθ(s, a) =
∏
i∈N π

i
θi

(s, ai).We first make a standard regularity assumption
on the model and the policy parameterization.

Assumption 1. For any i ∈ N , s ∈ S, and ai ∈ Ai, the policy function πi
θi

(s, ai) > 0 for any
θi ∈ Θi. Also, πi

θi
(s, ai) is continuously differentiable with respect to the parameter θi over Θi. In

addition, for any θ ∈ Θ, let P θ be the transition matrix of the Markov chain {st}t≥0 induced by
policy πθ, that is, for any s, s′ ∈ S

P θ(s′ | s) =
∑
a∈A

πθ(s, a) · P (s′ | s, a). (1)

The Markov chain {st}t≥0 is irreducible and aperiodic under any πθ, with the stationary distribu-
tion denoted by dθ.

Assumption 1 has been imposed in the existing work on centralized actor-critic algorithms
with function approximation [26,27]. It implies that the Markov chain of the state-action pair
{(st, at)}t≥0 has a stationary distribution dθ(s) · πθ(s, a) for any s ∈ S and a ∈ A.

The objective of the agents is to collaboratively find a policy πθ that maximizes the globally
averaged long-term return over the network based solely on local information, namely,

max
θ

J(θ) = lim
T

1

T
E
( T−1∑

t=0

1

N

∑
i∈N

rit+1

)
=

∑
s∈S,a∈A

dθ(s)πθ(s, a) ·R(s, a), (2)

where R(s, a) = N−1 ·
∑

i∈N R
i(s, a) is the globally averaged reward function. It is worth noting

that such an averaged reward can be viewed as an example of Benthamite social welfare [28].
Let rt = N−1 ·

∑
i∈N r

i
t; then, we have R(s, a) = E[rt+1 | st = s, at = a]. Thus, the global relative

action-value function under policy πθ can be defined accordingly as

Qθ(s, a) =
∑
t

E
[
rt+1 − J(θ) | s0 = s, a0 = a, πθ

]
,

and the global relative state-value function Vθ(s) is defined as Vθ(s) =
∑

a∈A πθ(s, a)Qθ(s, a). For
simplicity, hereafter we will refer to Vθ and Qθ as state-value function and action-value function
only. Furthermore, the advantage function can be defined as Aθ(s, a) = Qθ(s, a)− Vθ(s).

As the basis for developing multi-agent actor-critic algorithms for distributed reinforcement
learning, the following policy gradient theorem was established in [4] for MARL.

Policy Gradient Theorem for MARL [Theorem 3.1 in [4]]: For any θ ∈ Θ and any agent
i ∈ N , define the local advantage function Aiθ : S ×A → R as

Aiθ(s, a) = Qθ(s, a)− Ṽ i
θ (s, a−i),

where Ṽ i
θ (s, a−i) =

∑
ai∈Ai π

i
θi

(s, ai) · Qθ(s, ai, a−i), and a−i denotes the actions of all agents
except for agent i. Then, the gradient of J(θ) with respect to θi is given by

∇θiJ(θ) = Es∼dθ,a∼πθ
[
∇θi log πiθi(s, a

i) ·Aθ(s, a)
]

= Es∼dθ,a∼πθ
[
∇θi log πiθi(s, a

i) ·Aiθ(s, a)
]
.
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B. The Asynchronous Algorithm

We consider a general asynchronous scenario in which each agent has its own independent clock.
It is not assumed that all agents’ clocks are synchronized, and thus the asynchronous system
needs to be described in continuous time as follows. Each agent independently determines times
at which it updates its variables. Specifically, each agent i has a strictly increasing, infinite
sequence of event times, denoted by ti0, ti1, ti2, . . ., with the understanding that ti0 is the time
agent i initializes its variables, and the remaining tik, k ≥ 1, are the times at which agent i
takes active actions such as transmitting information and updating variables. Between any two
successive event times tik and ti(k+1), k ≥ 1, agent i completes updating which may take time.
Without loss of generality, we assume that all agents complete initialization before their first
update, i.e., ti0 < tj1 for all i, j ∈ N . It is assumed that the difference between any two successive
event times of each agent cannot be too large or too small. To be more precise, for any i ∈ N ,
agent i’s event times satisfy

T̄i ≥ ti(k+1) − tik ≥ Ti, k ≥ 0, (3)

where T̄i and Ti are positive numbers such that T̄i > Ti. This assumption is natural as unbounded
difference will make an algorithm suspend, and too frequent event times may cause an algorithm
inefficient and sometimes even impossible due to hardware constraints. It is worth emphasizing
that we make no assumptions about the relationships between the event times of different agents.
Any two agents may have completely different unsynchronized event time sequences.

Each agent i communicates with the network at each of its event times tik, k ≥ 1, by
transmitting its current variables to its “out-neighbors”. We say that an agent j is an out-neighbor
of agent i if (i, j) is a directed edge in G. Similarly, we say that an agent k is an in-neighbor of
agent i if (k, i) is a directed edge in G. An agent can send information only to its out-neighbors
and receive information only from its in-neighbors. Thus, directions of the directed edges in
G represent directions of information flow. We use N i

− and N i
+ to denote the sets of out- and

in-neighbors of agent i, respectively. For simplicity, we assume that each agent is always an out-
and in-neighbor of itself, i.e., i ∈ N i

− and i ∈ N i
+ for all i ∈ N . In other words, G has a self-arc

at each node. Thus, |N i
−| ≥ 1 and |N i

+| ≥ 1, where |N i
−| and |N i

+| denote the cardinality of N i
−

and N i
+, i.e., the number of out- and in-neighbors of agent i, respectively.

Each agent i has control over a set of variables, denoted µit, ωit, vit, yit, zit, rit, θit, whose purposes
will be introduced shortly, and an additional scalar-valued variable yit whose initial value yiti0 = 1.

At each event time tik, i ∈ N , k ≥ 1, agent i sends a pair of scaled versions of its variables,
vitik
|N i−|

and
yitik
|N i−|

, to each of its out-neighbors. Agent i’s out-neighbors may receive this pair of
variables at different times as the transmissions are subject to communication delays which
are heterogeneous among the agents. We use dijtik to denote the communication delay when
agent i sends information to its out-neighbor j at its event time tik. In other words, agent j
will receive this information at time tik + dijtik . Similarly, agent i receives pairs of variables from
its in-neighbors from time to time which were transmitted at earlier times. We do not impose
any restrictions on communication delays, except for a natural assumption that communication
delays are bounded.

Each agent i computes new values of its variables based on those in-neighbors’ variables
received during the interval (ti(k−1), tik]. It is worth emphasizing that we take computation
time/delays into account. It is assumed that all computations can be completed before the next
event time ti(k+1) arrives. With this in mind, each agent i can define its next event time to be
the time at/after which it finishes its last round of updating.

The asynchronous algorithm consists of two steps in each iteration, a critic step followed by
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an actor step. For each event time tik, k ≥ 1, the critic step of agent i is as follows:

µiti(k+1)
= (1− βω,tik) · µitik + βω,tik · r

i
ti(k+1)

,

vitik = ωitik + βω,tik · δ
i
tik
· ∇zQtik(zitik),

ωiti(k+1)
=

vitik
|N i
−|

+
∑
j∈N i+

∑
s≥1

vjtjsχ(ti(k−1),tik](tjs + djitjs)

|N j
−|

,

yiti(k+1)
=

yitik
|N i
−|

+
∑
j∈N i+

∑
s≥1

yjtjsχ(ti(k−1),tik](tjs + djitjs)

|N j
−|

,

ziti(k+1)
=
ωiti(k+1)

yiti(k+1)

,

(4)

(5)

(6)

(7)

(8)

where µitik tracks the long-term average return of agent i, βω,tik > 0 is the stepsize, Qtik(z)
denotes Q(stik , atik ; z) for any z, djitjs is the communication delay of information transmitted
from agent j to agent i at time tjs, and χ(ti(k−1),tik](tjs + djitjs) is an indicator function defined as
χ(ti(k−1),tik](tjs + djitjs) = 1 if ti(k−1) < tjs + djitjs ≤ tik, otherwise χ(ti(k−1),tik](tjs + djitjs) = 0. It is
worth noting that the second items at the right hand side of (6) and (7) take sum of all received
scaled v and y variables, respectively, from agent i’s in-neighbors during the interval (ti(k−1), tik].
The local action-value TD-error δitik in (5) is given by

δitik = riti(k+1)
− µitik +Qti(k+1)

(zitik)−Qtik(zitik). (9)

As for the actor step, agent i improves its policy via

θiti(k+1)
= θitik + βθ,tik ·A

i
tik
· ψitik , (10)

where βθ,tik > 0 is the stepsize, Ait and ψit are defined as

Ait = Qt(z
i
t)−

∑
ai∈Ai

πiθit
(st, a

i) ·Q(st, a
i, a−it ; zit), (11)

ψit = ∇θi log πiθit
(st, a

i
t). (12)

It is worth emphasizing that all above updating can be computed at agent i in a distributed
manner.

We impose the following assumptions for the asynchronous actor-critic algorithm which are
either mild or standard; see [17] for detailed discussions on these assumptions. In particular, we
focus on convergence under linear approximation since even for centralized actor-critic algorithms,
there is no convergence guarantee for nonlinear approximation.

Assumption 2. The instantaneous reward rit is uniformly bounded for any i ∈ N and t ≥ 0.

Assumption 3. The stepsizes βω,t and βθ,t satisfy, for all i ∈ N ,
∑

k≥1 βω,tik =
∑

k≥1 βθ,tik =∞
and

∑
k≥1(β2

ω,tik
+ β2

θ,tik
) <∞. In addition, βθ,tik = o(βω,tik).

Assumption 4. For each agent i, the function Q(s, a; z) is parametrized as Q(s, a; z) = z>φ(s, a),
where φ(s, a) = [φ1(s, a), · · · , φK(s, a)]> ∈ RK is the feature associated with (s, a). The feature
vector φ(s, a) is uniformly bounded for any s ∈ S, a ∈ A. Furthermore, the feature matrix
Φ ∈ R|S|·|A|×K has full column rank, where the k-th column of Φ is [φk(s, a), s ∈ S, a ∈ A]> for
any k ∈ [K]. Also, for any u ∈ RK , Φu 6= 1K , where 1K denotes the K-dimensional vector whose
entries all equal one.
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Assumption 5. The update of the policy parameter θit includes a local projection operator,
Γi : Rmi → Θi ⊂ Rmi, that projects any θit onto the compact set Θi. Also, we assume that
Θ =

∏N
i=1 Θi is large enough to include at least one local minimum of J(θ).

For simplicity, we define P θ(s′, a′ | s, a) = P (s′ | s, a)πθ(s
′, a′), Ds,a

θ = diag[dθ(s) · πθ(s, a), s ∈
S, a ∈ A], and R = [R(s, a), s ∈ S, a ∈ A]> ∈ R|S|·|A|. Note that, with slight abuse of notation,
the expression P θ has the same form as the transition probability matrix of the Markov chain
{st}t≥0 under policy πθ; see (1). These two matrices can be easily differentiated by the context.

To state our main result, we define the operator TQθ : R|S|·|A| → R|S|·|A| for any action-value
vector Q ∈ R|S|·|A| as

TQθ (Q) = R− J(θ) · 1|S|·|A| + P θQ.

We also define the vector Γ̂i(·) as

Γ̂i[g(θ)] = lim
0<η→0

{Γi[θi + η· g(θ)]− θi}/η (13)

for any θ ∈ Θ and continuous function g : Θ→ R
∑
i∈N mi . In case the limit above is not unique,

Γ̂i[g(θ)] is defined as the set of all possible limit points of (13).
With the above notation, we establish the following convergence results of the critic step (4) –

(9) and actor step (10) – (12) given policy πθ.

Theorem 1. Suppose that Assumptions 1 – 4 hold, and that communication graph sequence
{Ḡτ}∞τ=1 is repeatedly jointly strongly connected. Then, for any given policy πθ, with the sequences
{µ̄iτ} and {z̄iτ} generated from (4) and (8), we have limk→∞

∑
i∈N µ

i
tik
· N−1 = J(θ) and

limk→∞ z
i
tik

= ωθ almost surely for any i ∈ N , where J(θ) is the globally averaged return as
defined in (2), and ωθ is the unique solution to

Φ>Ds,a
θ

[
TQθ (Φωθ)− Φωθ

]
= 0.

Suppose further that Assumption 5 holds. Then, for all i ∈ N , the sequence {θitik} obtained from
(10) converges almost surely to a point in the set of the asymptotically stable equilibria of

θ̇i = Γ̂i
[
Est∼dθ,at∼πθ

(
Ait,θ · ψit,θ

)]
.

III. Analysis

In this section, we use the concept of analytic synchronization [29] to derive a synchronous system
whose limiting behavior is the same as the asynchronous system under consideration, which
serves a critical step toward the proof of Theorem 1.

We first need a common time scale on which all n agents’ update rules can be defined. For
this, let Ti be the set of the event times of agent i which are greater than or equal to ti1, and let
T be the union of all Ti. Relabel the times in T as t1, t2, . . . , tτ , . . . so that tτ < tτ+1 for τ ≥ 1. It
is easy to see that T̄max = max{T̄1, T̄2, . . . , T̄n} uniformly bounds above the time interval between
any two successive event times in T .

For each i ∈ N and tτ ∈ T , we define the extended neighbor sets for agent i as follows, which
are for analysis purpose only. If tτ ∈ Ti, the extended in-neighbor set of agent i, denoted N i

+(τ),
is defined as the set of those agents, including agent i itself, whose scaled variables are received
by agent i during the time interval (ti(q−1), tiq] where tiq = tτ . If tτ /∈ Ti, N i

+(τ) is defined as a
simply index i. In other words,

N̄ i
+(τ) = {i} ∪ {j | ∃s ≥ 1 such that tjs + djitjs ∈ (ti(q−1), tiq]}, tτ ∈ Ti,

N̄ i
+(τ) = {i}, tτ /∈ Ti.
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It is clear that N̄ i
+(τ) ⊆ N i

+ for all τ ≥ 1. Similarly, the extended out-neighbor set of agent i,
denoted N i

−(τ), is defined as

N̄ i
−(τ) = N i

−, tτ ∈ Ti,
N̄ i
−(τ) = {i}, tτ /∈ Ti.

Thus, N̄ i
−(τ) coincides with N i

− whenever tτ is an event time of agent i and the simple index
i otherwise. We describe all defined neighbor relationships at time τ ∈ {1, 2, . . .} to be the
time-varying directed graph Ḡτ with vertex set N and edge set Ēτ ⊂ N ×N which satisfies the
above extended in- and out-neighbor relationships. We call Ḡτ the extended neighbor graph of the
asynchronous system under consideration at time τ (or equivalently, event time tτ ). It is worth
noting that even though the real underlying neighbor graph G is time-invariant, the nominal
graph Ḡτ defined on event times tτ ∈ T is time-varying due to asynchrony and time delays. It is
worth noting that each agent i is always an extended in- and out-neighbor of itself, and thus Ḡτ
has a self-arc at each node for all τ ≥ 1. More can be said. Since G is strongly connected, and
each agent’s time intervals between any two successive two event times are uniformly bounded
above due to (3), it is easy to show the following result.

Lemma 1. If G is strongly connected, {Ḡτ}∞τ=1 is repeatedly jointly strongly connected.

Here an infinite sequence of graphs Ḡ1, Ḡ2, . . . with the same vertex set is called repeatedly
jointly strongly connected if for some positive integer l and each integer k > 0, the union of
Ḡkl+1, Ḡkl+2, . . . , Ḡ(k+1)l is strongly connected. It is also called “B-connected” in the literature [30].

We next rewrite (6) in a form which is convenient for analysis. Toward this end, fix k ≥ 1 and

j ∈ N i
+. Suppose that agent j transmits its scaled variable

vjtjs

N j−
to agent i at its event time tjs

and agent i receives the variable at time t ∈ (ti(k−1), tik]. Agent i then holds this variable until
time tik at which it is used in the computation of ωiti(k+1)

via (6). The transmission time for this
event is t− tjs whereas the hold time is tik − t. Note that the hold time tik − t is bounded above
by T̄i because of (3). We have assumed that the transmission time t− tjs is bounded above as
well. Thus, there exists a nonnegative integer d̄jitik such that tjs = tik − d̄jitik . Note that tik and tjs
are two different event times in T . Set tik = tτ and tjs = tσ where σ, τ ∈ {1, 2, . . .} and σ < τ .
We write d̄ijτ = τ − σ for the number of distinct event times in T during the time interval (tσ, tτ ].
As a consequence of (3), there must exist a bounded integer d such that d̄ijτ < d̄ for all i, j ∈ N
and tτ ∈ T . Then, vjtjs = vj

tτ−dijτ
and dijτ ∈ {0, 1, . . . , d̄− 1}. Since each agent i can always access

the latest value of its own variables, diiτ = 0 for all i ∈ N and tτ ∈ T . Similar arguments apply
to (7).

To proceed, for each i ∈ N and tq ∈ Ti, define

µitτ = µitq′ , vitτ = vitq′ , δitτ = δitq′ , ωitτ = ωitq′ , yitτ = yitq′ , θitτ = θitq′ , q < τ ≤ q′,

where tq′ is the first event time of agent i after tq. Note that for any tq ∈ Ti, there always exists
such a q′ because of (3). Then, each agent’s variables are well defined at any other agent’s event
times, so at any event time in T .

Now we define a new set of variables to conveniently describe a synchronous system, which is
equivalent to the asynchronous system under consideration, as follows:

µ̄iτ = µitτ , v̄iτ = vitτ , δ̄iτ = δitτ , ω̄iτ = ωitτ , ȳiτ = yitτ , z̄iτ = zitτ , θ̄iτ = θitτ .

We also need define each agent’s stepsizes for the new variables at its own and other agents’
event times. Specifically, for all i ∈ N and tτ ∈ T , define

β̄ω̄,τ = βω,tτ , β̄θ̄,τ = βθ,tτ , tτ ∈ Ti,
β̄ω̄,τ = 0, β̄θ̄,τ = 0, tτ /∈ Ti.

It is easy to verify that the stepsizes β̄ω̄,τ and β̄θ̄,τ satisfy Assumption 3, stated as follows.
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Lemma 2. Suppose that Assumption 3 holds. Then, the stepsizes β̄ω̄,τ and β̄θ̄,τ satisfy, for all
i ∈ N ,

∑
τ≥1 β̄ω̄,τ =

∑
τ≥1 β̄θ̄,τ =∞ and

∑
τ≥1(β̄2

ω̄,τ + β̄2
θ̄,τ

) <∞. In addition, β̄θ̄,τ = o(β̄ω̄,τ ).

The preceding discussion enables us to extend the domain of applicability of the asynchronous
algorithm under consideration from Ti to all of T , which leads to a synchronous system. The
synchronous algorithm also consists of two steps in each iteration, a critic step followed by an
actor step. For each τ ≥ 1, the critic step of agent i is as follows:

µ̄iτ+1 = (1− β̄ω̄,τ ) · µ̄iτ + β̄ω̄,τ · riτ+1,

v̄iτ = ω̄iτ + β̄ω̄,τ · δ̄iτ · ∇zQτ (ziτ ),

ω̄iτ+1 =
v̄iτ
|N i
−|

+
∑

j∈N i+(τ)

∑
s≥1, ts∈Tj

v̄jsχ(σ,τ ](s+ d̄jis )

|N j
−|

,

ȳiτ+1 =
ȳiτ
|N i
−|

+
∑

j∈N i+(τ)

∑
s≥1, ts∈Tj

ȳjsχ(σ,τ ](s+ d̄jis )

|N j
−|

,

z̄iτ+1 =
ω̄iτ+1

ȳiτ+1

,

(14)

(15)

(16)

(17)

(18)

where σ is the largest integer such that tσ ∈ T is an event time in Ti before tτ , χ(σ,τ ](s+ d̄jis ) is an
indicator function defined as χ(σ,τ ](s+ d̄jis ) = 1 if σ < s+ d̄jis ≤ τ , and otherwise χ(σ,τ ](s+ d̄jis ) = 0.
The local action-value TD-error δ̄iτ in (15) is given by

δ̄iτ = riτ+1 − µ̄iτ +Qτ+1(z̄iτ )−Qτ (z̄iτ ). (19)

The actor step of agent i is as follows:

θ̄iτ+1 = θ̄iτ + β̄θ̄,τ ·Aiτ · ψiτ , (20)

where Ait and ψit are defined in (11) and (12), respectively.
Since the asynchronous algorithm under consideration has the same limiting behavior as the

synchronous algorithm just described, Theorem 1 is an immediate consequence of the following
result.

Proposition 1. Suppose that Assumptions 1 – 4 hold, and that communication graph G is
strongly connected. Then, for any given policy πθ, with the sequences {µ̄iτ} and {z̄iτ} generated
from (14) and (18), we have limτ→∞

∑
i∈N µ̄

i
τ ·N−1 = J(θ) and limτ→∞ z̄

i
τ = ωθ almost surely

for any i ∈ N , where J(θ) is the globally averaged return as defined in (2), and ωθ is the unique
solution to

Φ>Ds,a
θ

[
TQθ (Φωθ)− Φωθ

]
= 0.

Suppose further that Assumption 5 holds. Then, for all i ∈ N , the sequence {θ̄iτ} obtained from
(20) converges almost surely to a point in the set of the asymptotically stable equilibria of

θ̇i = Γ̂i
[
Est∼dθ,at∼πθ

(
Ait,θ · ψit,θ

)]
.

The proof of this proposition can be found in the Appendix.

IV. Simulation

We evaluate a setting in which linear function approximation is adopted. Consider in total N = 20
agents, each having a binary-valued action space, i.e., Ai = {0, 1}, for all i ∈ N . Thus, the
cardinality of the set of actions A is 220. In addition, there are in total |S| = 20 states. The
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elements in the transition probability matrix P are uniformly sampled from the interval [0, 1]
and normalized to be a stochastic matrix. We also add a small constant 10−5 onto each element
in the matrix to ensure ergodicity of the MDP such that Assumption 1 is satisfied. For each
agent i and each state-action pair (s, a), the mean reward Ri(s, a) is sampled uniformly from
[0, 4], which varies among agents. The instantaneous rewards rit are sampled from the uniform
distribution [Ri(s, a)− 0.5, Ri(s, a) + 0.5]. The policy πi

θi
(s, ai) is parameterized following the

Boltzman policies, i.e.,

πiθi(s, a
i) =

exp
(
qᵀ
s,bi
θi
)

∑
bi∈Ai

exp
(
qᵀ
s,bi
θi
)

where qs,bi ∈ Rmi is the feature vector with the same dimension as θi, for any s ∈ S and i ∈ N .
Here we set m1 = m2 = · · · = mN = 5. The elements of qs,bi are also uniformly sampled from
[0, 1]. In particular, the gradient of the score function thus has the form

∇θi log πiθi(s, a
i) = qs,ai −

∑
bi∈Ai

πiθi(s, a
i)qs,bi .

The feature vectors ϕ ∈ RK for the action-value function Q(·, ·;ω) are all uniformly sampled
from [0, 1], of dimensions K = 5� |S| · |A|.

The communication graph G is fixed and strongly connected. The stepsizes are selected
as βω,tik = 1/k0.65 and βθ,tik = 1/k0.85, which satisfy Assumption 2. For each agent, the time
between two consecutive events ∆tik are uniformly sampled from [0.5, 1.5], so that E[∆tik] = 1.
The delay time dtik is uniformly sampled from [0, 2]. Figure 1 shows the convergence of relative
Q-value functions of the asynchronous algorithm under linear function approximation.

Figure 1: Convergence of relative Q-value functions

V. Conclusion

In this paper, we have proposed an asynchronous distributed actor-critic algorithm for solving a
networked reinforcement learning problem. We have shown that the algorithm converges under
linear function approximation. One extension would be to relax the uniform boundedness of
consecutive times of action of an agent to a probabilistic one, as in [31]. For future work, we
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will consider other communication issues such as packet drops and other reinforcement learning
algorithms such as off-policy actor-critic algorithms.

VI. Appendix

This appendix material provides a complete proof of Proposition 1.
We first construct a new graph, denoted Ḡτ , based on Gτ for each τ for analysis purpose as

follows. We regard each agent i as node ni(0) in Ḡτ and introduce virtual nodes ni(1), . . . , ni(d̄−1)

for each agent i, where d̄ − 1 is the maximum delay time among all agents. At each time τ ,
virtual node ni(k) holds the sum of the values that will be received by node ni(0) in k time
steps. Besides the directed edges in Gτ including self-arcs at all nodes ni(0), i ∈ N , we add
the following directed edges: for each directed edge (nj(0), ni(0)) in Gτ , we add directed edges
(nj(1), ni(0)), (nj(2), ni(0)), . . . , (nj(d̄−1), ni(0)) and (nj(0), nj(1)), (nj(1), nj(2)), . . . , (nj(d̄−2), nj(d̄−1))
for all i, j ∈ N . Thus, each Ḡτ has Nd̄ nodes, and not all Nd̄ nodes have a self-arc.

Let ω̄i(0)
τ , v

i(0)
τ and ȳi(0)

τ be the values of ω̄iτ , v̄iτ and ȳiτ respectively for each agent i, which
are given in equations (15)-(17). Let

Wτ = [(ω̄1(0)
τ )>, · · · , (ω̄N(0)

τ )>, (ω̄1(1)
τ )>, · · · , (ω̄N(1)

τ )>, · · · , (ω̄1(d̄−1)
τ )>, · · · , (ω̄N(d̄−1)

τ )>]>,

W̃τ = [(v̄1(0)
τ )>, · · · , (v̄N(0)

τ )>, (v̄1(1)
τ )>, · · · , (v̄N(1)

τ )>, · · · , (v̄1(d̄−1)
τ )>, · · · , (v̄N(d̄−1)

τ )>]>,

Yτ = [ȳ1(0)
τ , · · · , ȳN(0)

τ , ȳ1(1)
τ , · · · , ȳN(1)

τ , · · · , ȳ1(d̄−1)
τ , · · · , ȳN(d̄−1)

τ ]>,

z̄τ = [(z̄1
τ ))>, · · · , (z̄Nτ )>]>,

Ũτ = [(δ̄1
τ · ∇zQ(z̄1

τ ))>, · · · , (δ̄Nτ · ∇zQ(z̄Nτ ))>, 0>NK(d̄−1)×1]>,

where ω̄i(s)τ , v̄i(s)τ and ȳ
i(s)
τ denote the variables of nodes ni(s) at time τ , respectively, z̄iτ =

[z̄iτ (1), · · · , z̄iτ (K)]>, and z̄iτ (k) = ω̄
i(0)
τ (k)/ȳ

i(0)
τ , where ω̄i(0)

τ (k) denotes the kth entry of vector
ω̄
i(0)
τ , ∀i = 1, · · · , N, k = 1, . . . ,K.
Let χ̄jiτ (d) be an indicator function defined as χ̄jiτ (d) = 1 if agent j sends information to

agent i at time tτ−d (agent i updates at time tτ ), otherwise χ̄
ji
τ (d) = 0. Then, we can rewrite the

equations (16) and (17) as (21) and (22) in the following update:

µ̄iτ+1 = (1− β̄ω̄,τ ) · µ̄iτ + β̄ω̄,τ · riτ+1,

v̄iτ = ω̄iτ + β̄ω̄,τ · δ̄iτ · ∇zQτ (ziτ ),

ω̄iτ+1 =
v̄iτ
|N i
−|

+
∑
j∈N

d̄−1∑
d=0

v̄jτ−dχ
ji
τ (d)

|N j
−|

,

ȳiτ+1 =
ȳiτ
|N i
−|

+
∑
j∈N

d̄−1∑
d=1

ȳjτ−dχ
ji
τ (d)

|N j
−|

,

z̄iτ+1 =
ω̄iτ+1

ȳiτ+1

.

(21)

(22)
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Let

Hs
τ =


χ11
τ (s)
|N 1
−|

χ21
τ (s)
|N 2
−|

· · · χN1
τ (s)

|NN− |
χ12
τ (s)
|N 1
−|

χ22
τ (s)
|N 2
−|

· · · χN2
τ (s)

|NN− |
· · · · · · · · · · · ·

χ1N
τ (s)
|N 1
−|

χ2N
τ (s)
|N 2
−|

· · · χNNτ (s)

|NN− |

 , ∀s = 0, 1, · · · , d̄− 1,

Hτ =


H0
τ IN 0N · · · 0N

H1
τ 0N IN · · · 0N
· · · · · · · · · · · · · · ·
H d̄−2
τ 0N 0N · · · IN

H d̄−1
τ 0N 0N · · · 0N

 ,
where IN and 0N denote the N × N identity matrix and zero matrix, repectively. Then, the
above update can be written in a compact state form:

W̃τ = Wτ + β̄ω̄,τ · Ũτ ,
Wτ+1 = Hτ ⊗ IK · W̃τ ,

Yτ+1 = Hτ · Yτ .
(23)

Define the operator 〈·〉1 : RKN → RK and 〈·〉2 : RKNd̄ → RK as

〈x〉1 =
1

N
(1>N ⊗ IK)x =

1

N

∑
i∈N

xi,

〈y〉2 =
1

N
(1>Nd̄ ⊗ IK)y =

1

N

∑
i∈N

d̄−1∑
s=0

yi(s),

for any x = [(x1)>, . . . , (xN )>]> ∈ RKN with xi ∈ RK , and
y = [(y1(0))>, . . . , (yN(0))>, · · · , (y1(d̄−1))>, . . . , (yN(d̄−1))>]> ∈ RKNd̄ with yi(s) ∈ RK for all
i ∈ N , s = 0, · · · , d̄− 1.

Lemma 3. There exists a constant α > 0 such that α ≤ ȳi(0)
τ ≤ N for any i and τ almost surely.

Proof: From Proposition 1 in [32], when τ > Nd̄, there exists a positive constant cmin such
that the first N rows of matrix product Πτ

s=0Hs are strictly positive with minimum entry greater
than or equal to cmin. Moreover, we have the update Yτ = Πτ

s=0Hs · Y0. Then, when τ > Nd̄,
there exists a positive constant α for which 0 ≤ α ≤ N · cmin and the first N entries of Yτ are
greater than or equal to α. Thus, we know that α ≤ ȳi(0)

τ ≤ N for all i and τ .
To proceed, let

W k
τ = [ω̄1(0)

τ (k), · · · , ω̄N(0)
τ (k), · · · , ω̄1(d̄−1)

τ (k), · · · , ω̄N(d̄−1)
τ (k)]>,

W̃ k
τ = [v̄1(0)

τ (k), · · · , v̄N(0)
τ (k), · · · , v̄1(d̄−1)

τ (k), · · · , v̄N(d̄−1)
τ (k)]>,

Ũkτ = [ũ1(0)
τ (k), · · · , ũN(0)

τ (k), · · · , ũ1(d̄−1)
τ (k), · · · , ũN(d̄−1)

τ (k)]>.

Then, we have 

W̃ k
τ = W k

τ + β̄ω̄,τ Ũ
k
τ ,

W k
τ+1 = HτW̃

k
τ ,

Yτ+1 = HτYτ ,

z̄iτ+1(k) =
W k
τ+1(i)

Yτ+1(i)
, ∀i = 1, · · · , N,

where W k
τ+1(i) and Yτ+1(i) are the ith entry of vector W k

τ+1 and Yτ+1, respectively.
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Lemma 4. For all i = 1, · · · , N , and k = 1, · · · ,K, limτ→∞ z̄
ik
τ = limτ→∞ 1>

Nd̄
W k
τ /N .

Proof: Let H(τ : s) = Πτ
k=sHk. There exists a vector lτ such that |[H(t : s)]i,j − liτ | ≤

Cλτ−s,∀τ ≥ s ≥ 0, where C is a constant and λ ∈ (0, 1). Let D(τ, s) = H(τ, s) − lτ1>. Then,
we have

W̃ k
τ+1 = H(τ : 0)W̃ k

0 +
τ∑
s=1

H(τ : s)Ũks β̄ω̄,s + Ũkτ+1β̄ω̄,τ+1,

1>W̃ k
τ+1 = 1>W̃ k

0 +
τ+1∑
s=1

1>Ũks β̄ω̄,s,

Hτ+1W̃
k
τ+1 − lτ+11

>W̃ k
τ+1 = (H(τ + 1 : 0)− lt+11

>)W̃ k
0 +

τ+1∑
s=1

(H(τ + 1 : s)− lτ+11
>)Ũks β̄ω̄,s.

From this, we have, for τ ≥ 1,

W k
τ+1 = HτW̃

k
τ = lτ1

>W̃ k
τ +D(τ, 0)W̃ k

0 +
τ∑
s=1

D(τ, s)Ũks β̄ω̄,s,

Yτ+1 = H(τ : 0)Y0 = lτ1
>Y0 +D(τ, 0)Y0 = Nlτ +D(τ, 0)Y0.

Thus, for every τ ≥ 1 and for all i,

z̄iτ+1(k) =
W k
τ+1(i)

Yτ+1(i)

=
lτ (i)1>W̃ k

τ + [D(τ, 0)W̃ k
0 ](i) +

∑τ
s=1[D(τ, s)Ũks β̄ω̄,s](i)

Nlτ (i) + [D(τ, 0)Y0](i)
.

Therefore,

z̄iτ+1(k)− 1>W̃ k
τ

N
=
lτ (i)1>W̃ k

τ + [D(τ, 0)W̃ k
0 ](i) +

∑τ
s=1[D(τ, s)Ũks β̄ω̄,s](i)

Nlτ (i) + [D(τ, 0)Y0](i)
− 1>W̃ k

τ

N

=
[D(τ, 0)W̃ k

0 ](i) +
∑τ

s=1 τ [D(τ, s)Ũks β̄ω̄,s](i)

Nlτ (i) + [D(τ, 0)Y0](i)
− 1>W̃ k

τ [D(τ : 0)Y0](i)

N [Nlτ (i) + [D(τ : 0)Y0](i)]
.

By definition of α, W̃ k
τ (i)N + [D(τ, 0)1](i) = [H(τ : 0) · [1>N , 0>N(d̄−1)

]>](i) ≥ α, i = 1, · · · , N .
Thus, for all i = 1, · · · , N and τ ≥ 1, we have

|z̄ikτ+1 −
1>W̄ k

τ

N
| ≤
|[D(τ, 0)W̃ k

0 ](i) +
∑τ

s=1[D(τ, s)Ũks β̄ω̄,s](i)|
Nlτ (i) + [D(τ, 0)Y0](i)

+
|1>W̃ k

τ [D(τ, 0)Y0](i)|
N [Nhτ (i) + [D(τ, 0)Y0](i)]

≤ 1

α
[max

j
|[D(τ, 0)](i, j)| · ‖W̃ k

0 ‖1 +
τ∑
s=1

max
j
|[D(τ, s)](i, j)| · ‖Ũks ‖1β̄ω̄,s]

+
1

α
|1>W̃ k

τ | ·max
j
|[D(τ, 0)](i, j)|

≤ Cλτ

α
‖W̃ k

0 ‖1 +
C

α

τ∑
s=1

λτ−s‖Ũks ‖1β̄ω̄,s +
Cλτ

α
|1>W̃ k

τ |

=
Cλτ

α
‖W̃ k

0 ‖1 +
C

α

τ∑
s=1

λτ−s‖Ũks ‖1β̄ω̄,s +
Cλτ

α
|1>W̃ k

0 +
τ+1∑
s=1

1>Ũks β̄ω̄,s|

≤ Cλτ

α
‖W̃ k

0 ‖1 +
C

α

τ∑
s=1

λτ−s‖Ũks ‖1β̄ω̄,s +
Cλτ

α
‖W̃ k

0 ‖1 +
Cλτ

α

τ+1∑
s=1

‖Ũks ‖1β̄ω̄,s

≤ 2C

α
[λτ · ‖W̃ k

0 ‖1 +

τ∑
s=1

λτ−s‖Ũks ‖1β̄ω̄,s],
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where [D(τ, 0)](i, j) is the entry at ith row and jth column of matrix D(τ, 0). Since λ ∈ (0, 1),
for all agent i,

lim
τ→∞

|z̄iτ+1(k)− 1>W̃ k
τ

N
| ≤ lim

τ→∞

2C

α
[λτ · ‖W̃ k

0 ‖1 +
τ∑
s=1

λτ−s‖Ũks ‖1β̄ω̄,s]

≤ lim
τ→∞

2C

α

τ∑
s=1

λτ−s‖Ũks ‖1β̄ω̄,s].

Since Ũks (i)→ 0 for every agent i, then ‖Ũks ‖1 → 0, and from the Lemma 5(a) in [30], we have

lim
τ→∞

|z̄iτ+1(k)− 1>W̃ k
τ

N
| ≤ lim

τ→∞

2C

α

τ∑
s=1

λτ−s‖Ũks ‖1β̄ω̄,s = 0.

This completes the proof.
From Lemma 4, since it is easy to show the following result, the proof is omitted.

Lemma 5. For all i ∈ N , limτ→∞ z̄
i
τ = limτ→∞〈Wτ 〉2 = limτ→∞〈z̄τ 〉1.

Lemma 6. Under Assumption 1 and Lemma 2, the sequence {µ̄iτ} generated as in (16) is bounded
almost surely.

Proof: The proof of the lemma is the same as that of Lemma 5.2 in [4].

Lemma 7. Under Assumptions 1, 2, 4 and Lemma 2, the sequence {ω̄i(k)
τ } is bounded almost

surely, i.e., supτ ‖Wτ‖ <∞.

Proof: Recall that the update of W is Wτ+1 = Hτ ⊗ IK · (Wτ + βω̄,t· Ũτ ) given in (23). Let
Ũτ = [ũ

1(0)
τ , · · · , ũN(0)

τ , · · · , ũ1(d̄−1)
τ , · · · , ũN(d̄−1)

τ ]. From the definition of Ũτ , for all agent i,{
ũ
i(0)
τ = (riτ+1 − µ̄iτ + (φτ+1 − φτ )ω̄

i(0)
τ /ȳ

i(0)
τ )φτ ,

ũ
i(s)
τ = 0, ∀s > 0.

Moreover, we have

ω̄
i(s)
τ+1 =

d̄−1∑
l=0

N∑
j=1

Hτ (i+ sN, j + lN)(ω̄j(l)τ + β̄ω̄,tũ
j(l)
τ ).

Let {Fτ,1} be the filtration with Fτ,1 = σ(rl, µ̄l,Wl, z̄l, Yl, sl, al, Bl−1, l < τ), and

hi(k)(ω̄i(k)
τ , µ̄iτ , ȳ

i(k)
τ , sτ , aτ ) = E(ũi(k)

τ |Fτ,1),M
i(k)
τ+1 = ũi(k)

τ − E(ũi(k)
τ |Fτ,1).

Since the Markov chain {(sτ , aτ )}τ≥0 is irreducible and aperiodic given policy πθ, we have
that when s = 0, h̄i(0)(ω̄

i(0)
τ , µ̄iτ , ȳ

i(0)
τ ) = Esτ∼dθ,aτ∼πθ [hi(0)(ω̄

i(0)
τ , µ̄it, ȳ

i(0)
τ , sτ , aτ )] = Φ>Ds,a

θ [Ri −
µ̄iτ1K+ 1

ȳ
i(0)
τ

(P θΦ−Φ)ω̄
i(0)
τ ] and for k > 0, h̄i(k)(ω̄

i(k)
τ , µ̄iτ , ȳ

i(k)
τ ) = Esτ∼dθ,aτ∼πθ [hi(k)(ω̄

i(k)
τ , µ̄iτ , ȳ

i(k)
τ , sτ , aτ )] =

0. From Assumptions 2 and 4, and Lemmas 3 and 6, we know that ∃K1,K2 > 0, s.t. ‖ φkτ

ȳ
i(0)
τ

‖∞ ≤ K1,

and ‖riτ+1−µ̄iτ‖ ≤ K2,∀k, i. Thus, ∃K3 > 0 such that ‖h̄i(k)(ω̄
i(k)
τ , µ̄iτ , ȳ

i(k)
τ )−hi(k)(ω̄

i(k)
τ , µ̄iτ , ȳ

i(k)
τ , sτ , aτ )‖2 ≤

K3· (1 + ‖Wτ‖2). Moreover, we know hi(k)(ω̄
i(k)
τ , µ̄iτ , ȳ

i(k)
τ , sτ , aτ ) is Lipschitz continuous in W i

τ ,
and M i

τ+1 is a martingale difference sequence. Since Hτ is a column stochastic matrix, it has
bounded norm. Thus, by Theorem A.2 in [4], W i

τ is bounded almost surely.

Lemma 8. Under Assumptions 1, 2, 4 and Lemma 2, the sequence {z̄iτ} is bounded almost surely,
i.e., supτ ‖z̄iτ‖ <∞, ∀i = 1, · · · , N .

13



Proof: From (16), we know that for each entry k in z̄iτ , z̄iτ (k) = ω̄
i(0)
τ (k)/ȳ

i(0)
τ , k ∈ {1, . . . ,K}.

Moreover, from Lemmas 3 and 7, ω̄i(0)
τ and ȳi(0)

τ are bounded almost surely. Therefore, it is easy
to show that z̄τ is also bounded almost surely.

We are now in a position to prove Proposition 1.
Proof of Proposition 1: The iteration of 〈Wτ 〉2 has the following form:

〈Wτ+1〉2 =
1

N
(1>Nd̄ ⊗ IK)Hτ ⊗ IK(Wτ + β̄ω̄,τ Ũt+1)

=
1

N
(1>Nd̄ ⊗ IK)(Wτ + β̄ω̄,τ Ũτ+1)

= 〈Wτ 〉2 + β̄ω̄,τ 〈Ũτ+1〉2
= 〈Wτ 〉2 + β̄ω̄,τ 〈δ̃τ 〉1·φτ .

Hence, the updates for 〈Wτ 〉2 and 〈µ̄τ 〉1 are

〈µ̄τ+1〉1 = 〈µ̄τ 〉1 + β̄ω̄,τ ·E(r̄τ+1 − 〈µ̄τ 〉1|Fτ,1) + β̄ω̄,τ · ξτ+1,1, (24)

〈Wτ+1〉2 = 〈Wτ 〉2 + β̄ω̄,τ ·E(δ̂τ+1φτ |Fτ,1) + β̄ω̄,τ · ξτ+1,2 + β̄ω̄,τ · γτ+1, (25)

where δ̂τ+1 = 〈rτ+1 − µ̄τ 〉1 + (Φτ+1 − Φτ )〈Wτ 〉2, ξτ+1,1 = rτ+1 − E(rτ+1 − 〈µ̄τ 〉|Fτ,1), ξτ+1,2 =

δ̂τ+1φτ − E(δ̂τ+1φτ |Fτ,1), and γτ+1 = 〈δ̃τ+1〉φτ − δ̂τ+1φτ .
Note that E(rτ+1 − 〈µ̄τ 〉1|Fτ,1) is Lipschitz continuous in 〈µ̄τ 〉1, and that E(δ̂τ+1φτ |Fτ,1)

is Lipschitz continuous in both 〈Wτ 〉2 and 〈µ̄τ 〉1. Moreover, ξτ+1,1 and ξτ+1,2 are martingale
differences sequences. From Lemmas 3 and 7, {γτ} is a bounded random sequence with γτ → 0
as τ →∞ almost surely.

From Theorem B.2 in [4], the following ODE captures the asymptotic behavior of (24) and
(25): [

〈 ˙̄µ〉1
〈Ẇ 〉2

]
=

[
−1 0

−Φ>Ds,a
θ 1NK Φ>Ds,a

θ (P θ − INK)Φ

] [
〈µ̄〉1
〈W 〉2

]
+

[
J(θ)
Φ>Ds,a

θ R̄

]
(26)

From the proof of Theorem 4.6 in [4], the ODE (26) is globally asymptotically stable and has
its equilibrium satisfying{

〈µ̄〉1 = J(θ),
Φ>Ds,a

θ [R̄− 〈µ̄〉11NK + P θΦ〈W 〉2 − Φ〈W 〉2] = 0.

Note that the solution for 〈µ̄〉1 at equilibrium is J(θ), and the solution for 〈W 〉2 has the form ωθ+lv
with any l ∈ R and v ∈ RK such that φv = 1K , where ωθ follows that Φ>Ds,a

θ

[
TQθ (Φωθ)−Φωθ

]
=

0. Moreover, φv 6= 1K by Assumption 4, so ωθ is the unique solution, which implies that
limτ 〈Wτ 〉2 = ωθ. Combining the above facts with Lemma 5, we conclude that limτ z̄

i
τ = ωθ.
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