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Abstract— This paper studies a distributed multi-armed
bandit problem over a network of N agents, each of which
can communicate only with its neighbors, where neighbor
relationships are described by a connected graph G. Each agent
makes a sequence of decisions on selecting an arm from M
candidates, yet it only has access to local samples of the reward
for each action, which is a random variable. A distributed
upper confidence bound (UCB) algorithm is proposed for the
agents to cooperatively learn the best decision. It is shown that
when all the agents share a homogeneous distribution of each
arm reward, the algorithm achieves guaranteed logarithmic
regret for all N agents at the order of O((1 + 2ρ2)2 log T/N)
when T is large, where ρ2 denotes the second largest among
the absolute values of all the eigenvalues of the Metropolis
matrix of G. A sufficient condition under which the proposed
distributed algorithm learns faster than the centralized (single-
agent) counterpart is provided. Simulations suggest that the
algorithm also works for the case when the agents have
heterogeneous observations of each arm reward.

I. INTRODUCTION

Multi-armed bandit is a decision-making problem that is
common in both engineering and natural systems [1]. In a
classical multi-armed bandit problem, the decision maker
chooses one arm at each time from a given set of arms, and
gets a reward generated according to a random variable. As
different arms have different expected rewards, the goal of
the decision maker is to minimize its regret. The seminal
work [2] derived lower and upper bounds on asymptotic
regret on this bandit selection problem. A classical and
elegant algorithm named UCB1 was proposed in [3] with
finite-time analysis for i.i.d. bandits. The algorithm simply
maintains an index for each arm that balances exploration
and exploitation and the agent selects an arm at time t
according to it. It has been proved that UCB1 achieves an
O(log T ) regret. It is nearly impossible to survey the entire
bandit literature here.

Recently, multi-agent multi-armed bandit problems have
attracted increasing attention and been studied in various
settings [4]–[16]. For example, the work of [5]–[10] con-
sidered a “collision” setting where agents “collide” when
they simultaneously pull the same arm in wireless cogni-
tive network system, and the work of [11] focused on a
privacy-preserving problem for data sharing. Another line
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of research studies consensus-based distributed multi-armed
bandit problems. The work of [12] considered a setting where
agents only communicate to recommend arms rather than
exchange reward information. The work of [13] focused on
communication cost and proposed communication-efficient
protocols that achieve near optimal regret.

We are motivated by the work of [14], [15] which con-
sidered a distributed setting, where a network of agents
are allowed to share information over a neighbor graph
and cooperatively seek an optimal arm, and proposed two
algorithms called coop-UCB and coop-UCB2. While coop-
UCB requires global awareness on the total number of
agents in the network and the spectral gap of the underlying
neighbor graph, coop-UCB2 only requires the total number
of agents, but with a significantly larger regret. This paper
proposes a new distributed algorithm for the same setting,
which is built on the classical UCB1 algorithm [3] and
Metropolis algorithm [17]. We derive an O(log T ) upper
bound of regret for the proposed algorithm and show how
connectivity of the network affects the final regret bound of
each agent. More importantly, as shown by the simulations
in Section V-B, our algorithm performs well even under
a heterogeneous observation setting, whereas the existing
distributed algorithms cannot be applied, which implies more
promising applications of our algorithm.

Although in the homogeneous reward setting, each agent
can independently learn the optimal option, distributed multi-
armed bandit allows cooperative decision making and thus
can collect more information at each time instant. We show
that under certain connectivity condition, the proposed dis-
tributed algorithm learns faster than the centralized (single-
agent) counterpart. Moreover, compared with the centralized
model in which a center has access to all information,
cooperative learning in a distributed manner is more fault-
tolerant and privacy-preserving.

Our algorithm has various practical applications, such as
recommendation systems, with arms representing different
recommendation choices and rewards representing users’
satisfactory level of the selected recommendation. By ob-
serving each user’s satisfactory level of different recommen-
dations along with the feedback of their friends (neighbors),
the recommendation system can learn to select the best
recommendation for the user. The algorithm can also be
applied to clinical trials, where arms represents different
treatments. The information sharing between hospitals can
improve the efficiency of data collecting as more samples
can be observed, while only allowing direct communication
of “nearby” hospitals, instead of gathering the information



altogether, can reduce the information gathering difficulty as
well as the risk of information leaking.

II. PROBLEM FORMULATION

Consider a network consisting of N agents (or players).
For ease of presentation, we label the agents from 1 through
N . The agents are not aware of such a global labeling,
but can differentiate between their neighbors. The set of
agents is denoted by [N ] = {1, 2, . . . , N}. All agents face a
common set of M arms, denoted by [M ] = {1, 2, . . . ,M}.
At each discrete time t ∈ {1, 2, . . . , T}, each agent i makes a
decision on which arm to select from the M options, and the
selected arm is denoted by ai(t). When agent i selects arm
k, it collects a reward Xi,k(t), we assume that {Xi,k(t)}Tt=1

is a random process. We consider a homogeneous setting in
which all Xi,k(t), i ∈ [N ], share the same expectation µk
for each arm k. Without loss of generality, we assume that
Xi,k(t) have bounded support [0, 1] and that µ1 ≥ µ2 ≥
· · · ≥ µM , so arm 1 has largest reward mean µ1.

Each agent can communicate only with its neighbors.
Neighbor relations among the N agents are described by
a simple, undirected, connected graph G = (V, E), with
vertices corresponding to agents and edges corresponding
to neighbor relations. Thus, agent j is a neighbor of agent i
whenever (i, j) is an edge in G.

The distributed multi-armed bandit problem is to devise a
distributed algorithm for each agent which will enable each
agent i to minimize its regret, defined as

Ri(T ) = Tµ1 −
T∑
t=1

E[Xai(t)],

with the goal of achieving at least Ri(T ) = o(T ) (i.e.,
Ri(T )/T → 0 as T →∞) for all i ∈ [N ].

Since all the agents share the same expectation µk for
each arm k in such a homogeneous setting, each agent can
learn the best decision independently, without communicat-
ing with its neighbors, by applying the classical single-agent
UCB1 algorithm [3], which achieves an upper bound for
the regret at O(log T ). We will present a cooperative multi-
agent algorithm in the sequel and show that under certain
connectivity condition, the cooperative algorithm can learn
faster than UCB1.

III. ALGORITHM

To describe our algorithm, we begin with some notation.
Let ni,k(t) be the number of times agent i pulls arm k by

time t. Let 1 be the indicator function that returns 1 if the
statement is true and 0 otherwise. Define

X̃i,k(t) =

∑t
τ=1 1(ai(τ) = k)Xi,k(τ)

ni,k(t)
, (1)

which represents the average reward that agent i received
from arm k till time t. Define

∆k = µ1 − µk, ∀k,

as the gap of mean reward between arm 1 and arm k.

Each agent i has control over two variables, ϑi,k(t) and
ñi,k(t), which are updated as follows:

ϑi,k(t+ 1) =
∑
j∈[N ]

wijϑj,k(t) + X̃i,k(t+ 1)− X̃i,k(t),

(2)
ñi,k(t+ 1) = max{ni,k(t), ñj,k(t), j ∈ Ni}, (3)

where Ni denotes the set of neighbors of agent i, and wij are
the Metropolis weights used in the Metropolis algorithm [17]
and defined as

wij = 0, j /∈ Ni,

wij =
1

1 + max{|Ni|, |Nj |}
, j ∈ Ni,

wii = 1−
∑
j∈Ni

1

1 + max{|Ni|, |Nj |}
.

Here |Ni| equals the number of neighbors of agent i, or
equivalently, the degree of vertex i in G. It is worth empha-
sizing that ϑi,k(t) and ñi,k(t) are updated in a distributed
manner as they only use information from their neighbors.
We will show later that ñi,k(t) and ϑi,k(t) are agent i’s
estimates of maxj∈[N ] nj,k(t), which stands for the maximal
number of pulls on arm k till time t, and reward mean µk,
respectively.

Let ϑk(t) and X̃k(t) be the column stacks of all ϑi,k(t)
and X̃i,k(t), respectively. Then, the N equations in (2) can
be combined as

ϑk(t+ 1) = Wϑk(t) + X̃k(t+ 1)− X̃k(t),

where W is the N × N Metropolis matrix of the neighbor
graph G, which is a symmetric doubly stochastic matrix and
whose ijth entry equals wij .

A detailed description of our algorithm, named Dist-UCB,
is given as follows.

Initialization: At time t = 0, each agent i samples each
arm k exactly once, sets ni,k(0) = 1, vi,k(0) = X̃i,k(0) =
Xi,k(0), and ñi,k(0) = 1.

At each t ∈ {0, 1, . . . , T}, each agent i performs the steps
enumerated below in the order indicated.

1) Transmission: Agent i transmits ñi,k(t) and ϑi,k(t)
to each of its neighbours j ∈ Ni; at the same time,
agent i receives ñj,k(t) and ϑj,k(t) from each of its
neighbors j ∈ Ni.

2) Decision Making: Agent i computes ñi,k(t + 1)
according to (3).
a) If there is no arm k such that ni,k(t) ≤ ñi,k(t+

1)−N , agent i computes the index

Qi,k(t+ 1) = ϑi,k(t) + Ci,k(t),

where Ci,k(t) is the corresponding upper confi-
dence bound, and then pulls the arm that maxi-
mizes Qi,k(t+ 1).

b) If there exists at least one arm k such that
ni,k(t) ≤ ñi,k(t+ 1)−N , then agent i randomly
pulls one such arm.



3) Updating: Agent i computes X̃i.k(t+1) and ϑi,k(t+
1) according to (1) and (2), respectively, and updates
all ni,k(t+ 1), k ∈ [M ], as follows:

ni,ai(t+1)(t+ 1) = ni,ai(t+1)(t) + 1,

ni,k(t+ 1) = ni,k(t), k 6= ai(t+ 1).

For a concise presentation of the algorithm, we refer to
the pseudocode in Algorithm 1.

Algorithm 1: Dist-UCB
Input: ∆k,G, T, Ci,k(t)
Output: Ri(T )

1 Initialization Each agent samples each arm exactly
once. Initialize
vi,k(0) = X̃i,k(0) = Xi,k(0), ñi,k(0) = ni,k(0) = 1

2 for t = 0, . . . , T do
3 Ai = ∅
4 Agent i sends ñi,k(t) and ϑi,k(t) to j ∈ Ni
5 Agent i receives ñj,k(t), ϑj,k(t) from j ∈ Ni
6 ñi,k(t+ 1) = max{(ni,k(t)), ñj,k(t), j ∈ Ni}
7 if ni,k(t) ≤ ñi,k(t+ 1)−N then
8 Agent i puts k into a set Ai
9 end

10 if Ai = ∅ then
11 for k = 1, . . . ,M do
12 Qi,k(t+ 1) = ϑi,k(t) + Ci,k(t)
13 end
14 ai(t+ 1) = arg maxkQi,k(t+ 1)
15 else
16 ai(t+ 1) is randomly chosen from Ai
17 end
18 ni,k(t+ 1) = ni,k(t), ∀k ∈ [M ]
19 ni,ai(t+1)(t+ 1) = ni,ai(t+1)(t) + 1
20 ϑi,k(t+ 1) =∑N

j=1 wijϑj,k(t) + X̃i,k(t+ 1)− X̃i,k(t)

21 end

22 Return Ri(T ) =
∑

∆k>0 ∆kni,k(T )

According to Dist-UCB, when N = 1, there is no need
to transmit information and the decision making step in our
algorithm will be simplified to agent pulling the maximum
index Qi,k(t + 1) = ϑi,k(t) + Ci,k(t). Since this ϑi,k(t) =

X̃i,k(t) according to (2) and Ci,k(t) =
√

2 log t
ni,k(t) as ρ2 is

defined as 0 when N = 1. It is not hard to see that our
algorithm is exactly the same as UCB1 [3] when N = 1,
thus so is the regret bound.

The main result of this paper is as follows whose proof is
given in the next section.

Theorem 1: For the Dist-UCB algorithm with bounded

rewards over [0, 1] and

Ci,k(t) =

√
2(1 + 2ρ2)2 log t

Nni,k(t)
,

the regret of each agent i until time T satisfies

Ri(T ) ≤
∑
k>1

(
max

{
L, (3M + 1)N,

8(1 + 2ρ2)2

N∆2
k

log T

}
+

2π2

3

)
∆k,

(4)

where ρ2 is the second largest among the absolute values of
all the eigenvalues of the Metropolis matrix W , and L is the
smallest value such that when t ≥ L, there holds

3ρ
t
N
2 ≤

ρ2

2Nt
.

It can be seen from the definition of L that it tends to be
large when ρ2 is close to 1, tends to be small when ρ2 is
close to 0, and would collapse to 0 when ρ2 = 0.

To the best of our knowledge, there is no existing work that
shows a direct relation between the regret bound and graph
connectivity. From (4), it is easy to see the smaller ρ2 is,
the tighter is our regret bound. Since a smaller ρ2 generally
indicates a more connected graph, Theorem 1 implies that the
more connected the neighbor graph G is, the tighter is each
agent’s regret bound, which is consistent with the intuition.

Consider the situation when T is sufficiently large, the
asymptotic regret bound of agent i would be

Ri(t) ≤
∑
k>1

(
8(1 + 2ρ2)2

N∆k
+ o(T )

)
log T.

Comparing it with the regret bound when each agent
independently applies single-agent UCB1, which is∑
k>1

(
8

∆k
+ o(T )

)
log T, it is not hard to see that when

ρ2 < (
√
N − 1)/2, our regret bound is smaller. Since ρ2

is always smaller than 1 as G is connected, we are able to
conclude that when N > 9, our asymptotic regret bound
is always better than that of UCB1, which implies that
our distributed algorithm learns faster than the single-agent
UCB1 for large-scale networks.

While Theorem 1 shows the relationship between graph
connectivity and the regret bound, it requires each agent i
to know ρ2, which is global information. It is possible to
relax the usage of ρ2 and get a relatively looser bound for
the regret, as shown in the following theorem.

Theorem 2: For the Dist-UCB algorithm with bounded
rewards over [0, 1] and

Ci,k(t) =

√
18 log t

Nni,k(t)
,



the regret of each agent i until time T satisfies

Ri(T ) ≤
∑
k>1

(
max

{
L, (3M + 1)N,

72

N∆2
k

log T

}
+

2π2

3

)
∆k.

A. Sub-Gaussian Distribution
So far, we have assumed reward distributions to be

bounded over [0, 1], for the purpose of being consistent with
the setting in the single-agent UCB1. It is worth emphasizing
that our Dist-UCB algorithm can be easily extended to
sub-Gaussian distributions, as the key step in the proof of
Theorem 1, the tail bound inequality (5), holds for all sub-
Gaussian random variables. Toward this end, let the optimal
variance proxy of reward distribution Xi,k(t) be no larger
than σ2. Then, we have the following result.

Theorem 3: For the Dist-UCB algorithm with sub-
Gaussian random rewards, whose optimal variance proxies
are no larger than σ2, and

Ci,k(t) = σ

√
2(1 + 2ρ2)2 log t

Nni,k(t)
,

the regret of agent i until time T satisfies

Ri(T ) ≤
∑
k>1

(
max

{
L, (3M + 1)N,

8σ2(1 + 2ρ2)2

N∆2
k

log T

}
+

2π2

3

)
∆k.

B. A Heterogeneous Observation Setting
In more general situations, when agent i selects arm k and

collects a reward Xk(t), the agent may not be able to observe
the exact reward; instead, it observes a biased “noisy” copy,
Xi,k(t), which is also a random variable. In this situation,
to estimate the exact reward, agents need to cooperate with
each other. We assume that Xk(t) and Xi,k(t) are two i.i.d.
random processes. Define µk and µi,k as the expectation of
Xk(t) and Xi,k(t), respectively, and assume they satisfy

µk =
1

N

N∑
i=1

µi,k,

which has a social meaning that the actual reward can
be obtained by averaging among agents to cancel out the
local bias. We also assume, without loss of generality, that
Xk(t), Xi,k(t) have bounded support and that µ1 ≥ µ2 ≥
· · · ≥ µM . Each agent i’s goal is also to minimize the
“actual” regret which is defined as

Ri(T ) = Tµ1 −
T∑
t=1

E
(
Xai(t)

)
for all i ∈ [N ].

While our analysis only shows the regret bound of ho-
mogeneous setting, we will show later in Section V-B
that our algorithm also performs well in the heterogeneous
observation setting.

IV. ANALYSIS

To prove Theorem 1, we need the following concept.

A. Sub-Gaussian Random Variables

A random variable X with µ = E[X] is called σ2 sub-
Gaussian if there is a positive σ such that

E(eλ(X−µ)) ≤ eσ
2λ2

2 , ∀λ ∈ IR,

where such σ2 is called a variance proxy, and the smallest
variance proxy is called the optimal variance proxy. Sub-
Gaussian random variables have the following properties.

Property 1: (Inequality) A sub-Gaussian random variable
X satisfies

P(X − µ ≥ a) ≤ e−
a2

2σ2 ,

P(µ−X ≥ a) ≤ e−
a2

2σ2 .

Property 2: (Sufficient condition) If X is a random vari-
able with finite mean µ and a ≤ X ≤ b almost surely, then
X is (b−a)2

4 sub-Gaussian.

Property 3: (Additivity) If X1 is σ2
1 sub-Gaussian and for

2 ≤ i ≤ n, (Xi|X1, . . . , Xi−1) is σ2
i sub-Gaussian with σi

being free of X1, . . . , Xi−1, then X1 + · · · + Xi is sub-
Gaussian with σ2

1 + · · ·+σ2
i being one of its variance proxy.

B. Proof of Theorem 1

Denote di,j as the distance between agents i and
j, ∀ i, j ∈ [N ], with di,i being naturally defined as 0. It
is clear that di,j < N for a connected graph.

Lemma 1: For any i ∈ [N ] and k ∈ [M ],

ñi,k(t+ 1) = max
j∈[N ]

{nj,k(t− di,j)} .

Lemma 2: For all i ∈ [N ] and k ∈ [M ], there holds
ni,k(t) > ñi,k(t+ 1)− 3MN .

Lemma 3: When ni,k(t) ≥ (3M + 1)N, for all i ∈
[N ], k ∈ [M ], we have maxj∈[N ] nj,k(t) ≤ 2ni,k(t).

Lemma 4: W t converges to 1
N 11> as t goes to infinity,

and
∣∣[W t]ij − 1

N

∣∣ < ρt2 for all i, j ∈ [N ], where 1 denotes
the vector whose entries are all equal to 1.

Proposition 1: When ni,k(t) ≥ max{L, (3M+1)N}, the
optimal variance proxy of ϑi,k(t) is no larger than (1+2ρ2)2

2Nni,k(t) .

Now we are in a position to prove Theorem 1.

Proof of Theorem 1: From Section IV-A and Proposition 1,
when ni,k(t) ≥ max{L, (3M + 1)N},

P

(
ϑi,k(t)− µk ≥

√
2(1 + 2ρ2)2

Nni,k(t)

)

≤ exp

(
− 2(1 + 2ρ2)2

2Nni,k(t)σ2
i,k(t)

)
≤ 1

t2
.

(5)



Similarly,

P

(
µk − ϑi,k(t) ≥

√
2(1 + 2ρ2)2

Nni,k(t)

)
≤ 1

t2
.

Let us go back to the algorithm, and let

Ci,k(t) =

√
2(1 + 2ρ2)2 log t

Nni,k(t)
.

The UCB algorithm requires, if at time t, agent i chooses arm
k instead of the optimal arm 1, there are only four possible
cases:

1. k ∈ Ai
2. ϑi,k(t)− µk ≥ Ci,k(t)
3. µ1 − ϑi,1(t) ≥ Ci,1(t)
4. µ1 − µk < 2Ci,k(t)

It is easy to verify that when

ni,k(t) ≥ 8(1 + 2ρ2)2

N∆2
k

log t,

case 4 does not hold. We define t′ as the time such that

ni,k(t′) = max

{
L, (3M + 1)N,

8(1 + 2ρ2)2

N∆2
k

log T

}
,

then∑
t>t′

P(ϑi,k(t)− µk ≥ Ci,k(t)) + P(µ1 − ϑi,1(t) ≥ Ci,1(t))

≤
∑
t>t′

2

t2
=
π2

3
,

which means after t′, the average number of pulls of agent
i on arm k due to case 2 and case 3 is no larger than π2

3 ,
consequently, the average number of pulls due to case 4 is
also no larger than π2

3 . Thus, we have

E(ni,k(T )) ≤ E(ni,k(T )|T > t′)

= ni,k(t′) +
π2

3
· 2

= max

{
L, (3M + 1)N,

8(1 + 2ρ2)2

N∆2
k

log T

}
+

2π2

3

for all i ∈ [N ], k ∈ [M ].
Now we can get an upper bound of agent i’s regret by

following its definition:

Ri(T ) = Tµ1 −
T∑
t=1

E(Xai(t))

=
∑
k>1

E(ni,k(T )) ·∆k

≤
∑
k>1

(
max

{
L, (3M + 1)N,

8(1 + 2ρ2)2

N∆2
k

log T

}
+

2π2

3

)
∆k,

which completes the proof.

V. SIMULATIONS

In this section, we elucidate the above analysis with
numerical experiments. First we compare our result with the
classical UCB1 [3] using our original (homogeneous) setting,
then change the reward distribution to a heterogeneous
observation setting mentioned in Section III-B and test the
performance of our algorithm under it.

A. Homogeneous Reward Setting

In the simulation below, we consider a multi-armed bandit
problem with 20 arms and 40 agents, the reward distribution
Xi,k(t) is bounded over [0, 1]. We average the results of 50
Monte-Carlo runs to compare the average regret of agents
using our algorithm to that of each agent independently
applying single-agent UCB1 [3]. ρ2 of the generated agents
graph is 0.4345, and the total time T is chosen to be 10000.

Fig. 1: simulation results comparing average regret for agents
using Dist-UCB and UCB1 when ρ2 = 0.4345

According to Theorem 1, when ρ2 is very close to 1, L
is possible to be the dominant term in finite time structure
and might be very large, thus resulting a possible larger
regret compared with that when using UCB1 within finite
time analysis, our simulation still shows good result though.
Below is the simulation result under the same setting above,
except ρ2 = 0.9640.

Fig. 2: simulation results comparing average regret for agents
using Dist-UCB and UCB1 when ρ2 = 0.9640



B. Heterogeneous Reward Setting

The result in this section is based on the heterogeneous
observation setting introduced in Section III-B. In the simula-
tion below, we consider a multi-armed bandit problem with
20 arms and 40 agents, the reward distribution Xi,k(t) is
bounded over [0, 5] with different expectations among agents.
We average the results of 50 Monte-Carlo runs to compare
the average actual regret of agents using our algorithm and
coop-UCB2 [15]. ρ2 of our generated agents graph is 0.4813,
and the total time T is chosen to be 100000.

Fig. 3: simulation results comparing average regret for agents
using Dist-UCB and coop-UCB2 [15] under heterogeneous
observation setting

Fig. 4: simulation results of average regret for agents using
Dist-UCB under heterogeneous observation setting

It is clearly shown in the simulation that coop-UCB2 is
not able to handle the problem while Dist-UCB still performs
quite well under heterogeneous observation setting. And to
our knowledge, Dist-UCB is the first algorithm that can
handle heterogeneous observation.

VI. CONCLUSION

In this paper, we have designed a novel algorithm to
estimate the mean reward in the distributed multi-armed
bandit problem. We have proved a logarithmic bound for
expected cumulative regret of each agent, which indicates
how graph connectivity is related with this regret. We have
showed in experiments that our algorithm can also be applied
to the setting where agents have heterogeneous observations

of rewards. Our algorithm requires global information, the
number of agents N . In future work, we aim to get around
this global information and do more explorations to the
heterogeneous setting, including its practical significance and
detailed analysis.
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