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Abstract—Image segmentation is a fundamental prob-
lem in computational vision and medical imaging. Design-
ing a generic automated method that works for various
objects and imaging modalities is a formidable task. In-
stead of proposing a new specific segmentation algorithm,
we present a general design principle on how to integrate
user interactions from the perspective of feedback con-
trol theory. Lyapunov stability analysis is employed to de-
sign and analyze an interactive segmentation system. Then,
stabilization conditions are derived to guide the algorithm
design. Finally, the effectiveness and robustness of the pro-
posed method are demonstrated.

Index Terms—Dynamical system, evolutionary process,
feedback control, hybrid systems, interactive image seg-
mentation.

|. INTRODUCTION

HE problem of image segmentation has been an active
T research field over the past several decades and remains
as a very challenging task. Although user (human) knowledge
can recognize and partition an image into necessary regions,
current automated algorithms fail to capture such boundaries
on a consistent basis over wide ranging image modalities, i.e.,
there exists no “universal” segmentation algorithm. This said,
the issue of effectively integrating user prior knowledge into
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a segmentation design is a driving principle behind existing
state-of-the-art methods. These application-driven methodolo-
gies utilized prior models to aid in the segmentation process [1].
However, these methods remain automated and suffer from the
same tacit issues for which they were designed to overcome.
As a result, users directly participate in the segmentation loop
in various image segmentation systems [2]. Given such input,
the research community has classified this area of research as
interactive segmentation [3]-[5]. Typically, one starts by initial-
izing a method and then iteratively modifies the intermediate
results until the algorithm obtains a satisfactory result. This
process loop can be alternatively viewed as a feedback control
process [6], whereby the user’s editing action is a controller,
the visualization/monitoring is an observer, and the changes of
the intermediate results drive the system dynamics. Once the
segmentation is complete, the system converges to an expected
result. In this manner, the user automatically fills the “infor-
mation” gap between an imperfect model to that of a desired
segmentation. However, much of the work along this line of re-
search does not explicitly model the user’s role from the systems
and control perspective. That is, user inputs are used passively
without consideration to its contribution to the stability or con-
vergence of the overall system. To the best of our knowledge,
there are very few attempts to model segmentation from the
perspective of feedback control.

Feedback principles have been used in the literature either
based on empirical rules, such as boundary consistency [7] and
connectivity of foreground pixels [8], or by modeling user con-
tribution as a weighted term in an objective function [9], [10]
to close the segmentation process. The important property of
stability for a control system was not touched upon in these
works. In our previous work [11], we formulated an interactive
image segmentation methodology as a form of feedback control
of a given partial differential equation (PDE) system and then
derived its stability conditions. The method was chosen to be the
classical region-based active contours for single-object segmen-
tation. One major advantage of this formulation is that although
the user does not know a perfect model/method for a segmen-
tation task (which in fact rarely exists), one can start from a
classic model and alter the segmentation in a principled manner.
We can then quantitatively design and evaluate the performance
of a control-based segmentation system.

0018-9286 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1.
the expert’s knowledge.

In this paper and with regard to our previous work [11], we ex-
pand our methodology to generalized cases of evolution-based
segmentation methods in addition to supporting multiple-object
segmentation. Fig. 1 shows the diagram of the proposed frame-
work. A user incorporates their prior knowledge to generate
corrections as input to the closed-loop system. The segmenta-
tion boundary evolution and explicit estimate of the user’s ideal
segmentation are updated within an inner loop.

The main contributions of this work are the following.

1) We present a framework on how to design an interactive
segmentation system from a feedback control perspec-
tive. Stabilization conditions for an interactive segmen-
tation system are derived yielding a tangible framework
for algorithm design and analysis. A key feature is that
we are bridging image segmentation with control theory.
As such, we are able to leverage new developments to
design and analyze more sophisticated image segmen-
tation systems. For example and in this work, a hybrid
systems framework is adopted to model user input so as
to provide a more practical approach than the continuous
case derived in [11].

2) We present a relaxed framework with regard to the core
algorithm (i.e., the only requirement is the ability to be
described as a dynamical system). In short, this can be
applied to multiobject segmentation, handles both region-
and distance-based metrics, and supports scalar and vec-
tor images.

3) We present a framework capable of analyzing the behav-
ior of some existing interactive segmentation methods,
providing directions for further improvements.

We should note and emphasize that the proposed controlled
segmentation framework offers control theoretics to enhance
existing methods as opposed to replacing the method itself.

This paper is organized as follows. Section II reviews auto-
mated and interactive segmentation methods as well as basics
from feedback control theory. Section III gives the formulation
of an automated segmentation as a dynamical system for both
region- and distance-based metrics. Section I'V provides the con-
trol laws to stabilize the dynamical system for generic cases and

Diagram of the control-based segmentation framework. The feedback compensates for deficiencies in automatic segmentation by utilizing

shows specific examples on how to realize these control laws.
Section V reports segmentation results followed by conclusion
in Section VI.

Il. LITERATURE REVIEW
A. (Semi)Automatic Image Segmentation

Variational image segmentation or active contour models are
one class of algorithms commonly used in automated image
segmentation. An underlying assumption employed in these al-
gorithms is that the optimization of an energy functional defined
over image features leads to an expected partition of the image
[12]. Examples of commonly used image features are edges [13],
regional statistics [14], and their combinations [15]. Multiobject
segmentation has been addressed either by adding constraints to
penalize violating areas [16] or by introducing competing com-
ponents for adjacent regions [17], [18]. The shortest-distance-
based image segmentation methods have been proposed along
this line [19]. Image classification/clustering can also be mod-
eled by using a variational framework [20]. Comprehensive in-
troduction and review of variational segmentation methods can
be found in [21] and [22] and references therein.

Alternative ways of representation, such as based on graph
or clustering, have been widely used in image segmentation as
well. See [23] and [24] and references therein for comprehensive
reviews.

B. Interactive Image Segmentation

Automatic segmentation is attractive, but user intervention is
inevitable in some critical tasks, especially for medical images
[25]. The limitations of automatic or semiautomatic segmenta-
tion methods are well known and have been extended to integrate
user interactions. Depending on the focus of these methods, the
interactive segmentation methods are roughly summarized as
follows.

1) User Interface: Some classic automatic segmentation
methods have been combined with a powerful visualization and
user editing system to achieve interactive segmentation. This is



3278

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 10, OCTOBER 2018

popular in some medical image segmentation systems [2], [26],
where classic methods such as region growing, active contours,
and graph cuts are adopted as core techniques. Common features
shared by these methods are efficient user interaction, easiness
of manipulation, especially for 3-D volumes.

2) Segmentation Accuracy: Much of the research focus
has placed emphasis on improving the segmentation accuracy
per user input. Typically, image segmentation is associated with
the optimization of an objective function. Thus, advances have
been made either by improving classic objective functions such
as active contours [10], graph cuts [27], and geodesic distance
[28] or by proposing new formulations to interpret user input
such as conditional random field [29] and random walker [5].
One of notable advances in this direction is the reformulation
of some variational algorithms, which are subject to local min-
ima, into convex optimization framework with global optimal
solutions [30], [31].

3) User Input Modeling and Accumulation: How to un-
derstand the meaning of user input to better equip a segmenta-
tion algorithm has recently received attention in the literature.
User input has been modeled as non-Euclidean kernels [32],
combined with the shape constraint [33], and categorized [34]
to reduce user efforts in interaction. Since user interaction is
not an isolated and passive action, learning-based methods have
been proposed to model the temporal/historic knowledge of user
input to increase efficiency [35], [36].

4) System Design: Withregard to the system design, recent
work has illuminated the causality and overall performance of
a system. User input is an integral part of the system, which is
combined with the current and previous states to determine the
next segmentation. Most of these algorithms are rooted either
in variational [11], [37], [38] or graph-based segmentations [3],
[4].

In addition to these four categories of research, graphics pro-
cessing unit computing has also been increasingly utilized to
develop real-time interactive segmentation systems [9], [31].

C. Feedback Control Theory

The principle of feedback is most often used in a control
system. The basic idea is to use the difference between the signal
to be controlled and a desired reference signal to determine
system actions. We should note that feedback control ought
not to be confused with simply taking feedback in a controlled
system—there is subtle but distinct difference to unambiguously
indicate when the performance is guaranteed [6], [39]. The
second requirement can be considered as studying the stability
of a system around a given state or an equilibrium point, referred
to as stabilization of a system.

A common technique used in system stabilization is by ana-
lyzing the Lyapunov function of a system [40], [41]. The basic
idea is to check whether the Laypunov function is dissipative
along all possible trajectories of a dynamical system around
the equilibrium point, rather than solving the system equation
directly. It has been applied to stabilize systems driven by sin-
gle [42] as well as coupled [43] PDEs. Lyapunov analysis has
been extended to derive stability conditions for time-delayed

systems [44] and discrete-time systems [45] and to synchronize
two chaotic systems with impulsive signals [46].

Continuous dynamical systems with discrete events have been
widely studied in impulsive control [47] and hybrid systems [48]
because of their effectiveness, efficiency, and flexibility to ad-
dress challenging stabilization problems in dynamical systems.

The existence of feedback has long been observed and uti-
lized in modeling the human vision system [49]. However, only
very few attempts have been made to employ the feedback prin-
ciple to design an image processing system. Early research add
feedback in image segmentation either based on empirical rules
[71, [8] or by adding user contribution as a weighted term [9],
[10], without addressing the issue of stability for these closed-
loop systems. For example, the formulations in [9] and [10] can
be rewritten as

80— 50)(G(6) + AL(E)) m
where d(¢) is the derivative of the regularized Heaviside func-
tion, which is the level-set function, G(¢) represents contri-
bution from image content, L(£) models online labeling error
& from user input, and A is a global constant scalar that bal-
ances the user’s influence to the segmentation. Refer to (4) and
Section I'V-B for details. The value of A is usually determined
empirically, rather than automatically adjusted to image con-
tent as in the proposed framework. In our previous work [11],
interactive image segmentation is formulated as controlling
region-based active contours, where the control law is derived
rigorously by using the Laypunov stability theorem.

I1l. AUTOMATIC SEGMENTATION AS AN OPEN-LOOP SYSTEM

A large class of segmentation algorithms can be consid-
ered as evolutionary processes, where these regions (or their
boundaries) “compete” with each other and evolve based on
certain quantifiable criteria [S0]. Examples include region grow-
ing/competition, classical active contour models, and distance-
based segmentation. Typically, the evolutionary process can be
described by a dynamical system, driven by the optimization
of certain energy functionals. As an example, the level-set for-
mulation of active contours has been extensively employed; see
[51] and [52] and the references therein. We note that level sets
were proposed in [53] and subsequently developed and applied
in many works.

Let I: — R” be an image defined on ) € R, where
m > 2 and n > 1. Image segmentation consists of determining
apartition R = {€;},i = 1,..., N such that @ = U} ,©; and
O NQ; =0ifi# j[50], [54].

Each region €; () is an open space represented by the zero-
level set of a smooth function ¢; : 2 — R, such that

¢i(x) >0, for x inside €
¢i(x) =0, for x € IQ; 2)
¢i(x) <0, for x outside ;.
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The regularized Heaviside function

]-7 lf(b > €
i B
Ho@)={T T
— (1 + — + —sin ()) , otherwise
2 € m €

3)
is used to indicate the exterior and interior regions such that
its derivative denoted by d(¢(x)) is well defined [52]. With a
slight abuse of notation, these are denoted by H (¢) and §(¢) for
simplicity hereinafter. Then, the dynamical system describing
the evolution is defined as follows:

obi .
ot = Gi(z,1)0(¢i) @

¢i(x,0) = ¢} ()

where G; : Q x R — R represents the intrinsic dynamics that
describes the evolution of the region §2; (x), and ¢ is an artificial
time that keeps track of the evolution process from an initial
state ¢! (x). Without loss of generality, each G;(x,t) may be
decomposed into two competing components as

G (iL‘, t) == [gi (:E, t) - gz'c(w7 t)] &)

where g; : ; x Rt — R represents the contribution from
Qi(x) and ¢f : Qf x R — R is that from all other Q;(x)
for j # 4. A negative sign is used in front of (5) due to the
definition of H for the interior region. This way of decompo-
sition ensures that no overlaps or gaps are developed between
different regions during the evolution process, which has been
used for modeling multiple active contours in different region-
based algorithms [17], [18], [20]. On the other hand, segmen-
tation algorithms that are based on clustering pixels according
to their “distances” to given seed points naturally fit into this
formulation, since image-based distance to given points can be
implemented using the level-set formulation [19]. Therefore,
the presented framework works for region-based active contour
models and distance-based clustering.

A. Region-Based Active Contour Models

The function g; (x, t) may be defined via the statistics of I(x)
inside the region ; (x). A simple example of such a statistical
measure is given by

gi(@,t) = [I(x) — i (t)]” 6(¢s) (6)

where I(x) € R and y;(t) is the average value of I(x) inside
the region €2; at time ¢ [14], [55], and

gi(z,t) = m;n gj(x,t) foreachx € (. (7
j#i

Other region-based energies [15], [18], [56] may be employed
in a similar way.

B. Distance-Based Clustering

Let §2; , be a set of points inside a region €2;, which is referred
to as “seed points” hereafter. The distance between a point = €

Q and the seed region is defined as

d(x,Q; ») = min min
( ’ z,a:) yeQ; o Cch(z,y

1
>/0 g, (CO)IC (p)lldp  (8)

where 0(x,y) is the family of all curves connecting points x
and y on the image, and p € [0,1] is the parameterization of
a specific path C': [0,1] — R"™ weighted by an image-based
function g, : R™ — R™. The distance d(z, ; ,,) may be com-
puted using the level-set formulation as well by interpreting it as
a front propagation problem with an image-dependent distance
measure 1/g.,, where g, (1) = 1+ ||VI||3 [19]. After comput-
ing the distance from a point to each seed region, the point is
assigned to the closest region.

With a slight abuse of notation, let d;(x,t), d;c (x,t), and
dumin(z, t) be the distance between point & and region €;, the
shortest distance between the point  and any regions other
than €; (x, t), and the shortest distance between the point and
all regions, respectively. An example of natural dynamics acting
on ¢; is defined as

/ i di ) dmin )
gj(m){gﬂ), ifdi(@, ) # dun(,8) -

0, otherwise

and

(10)

c g‘r (1)7 lf di" ($7t) 7é dmin (wat)
gi'(xv t) = .
0, otherwise.

Equations (9) and (10) are used in the evolution of (4) and (5).
This formulation is essentially a clustering process based on the
shortest distance from a point to all regions.

Fig. 2 shows an example of automatic segmentation by using
the models described in this section. With simple user initializa-
tions, either circular regions or scribbles, these two classical al-
gorithms capture the majority of the objects, while missing some
details. In particular, the region-based active contour has both
evolution leakage and unreached regions, while the distance-
based clustering fails to mark correct boundaries, where seed
regions were not properly specified. Though sophisticated meth-
ods [28], [30], [31] may achieve better segmentation results with
the same initializations, our main focus is how to improve these
classical methods by integrating user inputs from the perspective
of feedback control.

IV. INTERACTIVE SEGMENTATION AS FEEDBACK CONTROL

Suppose the user has an ideal segmentation of the image
domain into regions in mind: {¢; ()} fori =1,..., N. Then,
the goal is to design a feedback control system

88? = [Gi (@, ) + F(9i,67)]0(6)

¢i(z,0) = ¢! () (11)

such that limy;_ . ¢;(x,t) — ¢f(x) for i =1,..., N, where
F(¢i, ¢F) is the control law to be defined below.
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Fig. 2.

Example of automatic segmentation. First column: source image and manual segmentation. Second column: initialization for region-based

active contour (top) and distance-based clustering (bottom). Last column: automatic segmentation results.

A. Existence of a Regulatory Control

Define & := {&,...,&x } and V(&,t) as the pointwise and
total labeling error, respectively:

&i(z,t) = H(¢p;) — H()) (12)
1 N

VIED) = = 2(x, t)da. 13

(&) 2;_1/9@ (@, t)da (13)

If ¢;s are given and V' (€,t) € C', the determination of F(-, )
is straightforward by applying the Lyapunov’s direct method
for stabilization. The control signal F' uses the bounds of the
image-dependent term G; (i, t)

{IGi(, )]} (14)

g (x) == sup

vieR* i=1,...,N

Lemma 1: For the image bound defined in (14), there exists
at least one label, i € {1,..., N}, such that G;(z,t) < gy (x)
for a point on the zero-level set of ¢;.

Proof: By contradiction, otherwise, we have G;(x,t) >
gy (x),¥i=1,...,N. This may only hold when G;(z,t) =
gu (x),Vi=1,..., N, which implies points along the bound-
aries of adjacent regions will move in different directions. This
contradicts the condition of no overlap between any two regions.

|

Theorem IV.1: Notation as above. The control law

F(¢i7 ¢f) = Ot?(il:,t)&(il:,t),

where o (z,t) > g (), asymptotically stabilizes the system
(11) from {¢; (x, )} to {¢}(x)},i=1,..., N, for e defined in
(3) sufficiently small.

Furthermore, if §; is large in the sense of

/62(¢i)£?<w,t)dmzp/£E(w,t)dw,i=1,...,N (16)
Q Q

for a given constant p > 0, then there exists v > 0 such that the
control law exponentially stabilizes the system with a conver-
gence rate of e V",

Proof: As H is differentiable and continuous of €, so does
the ;. Note that £ — {—1,0,1} as ¢ — 0, we first look at the
case £ € {—1,0,1}. Take V(&,t) as the candidate Lyapunov
function and differentiate it with respect t. Take V (&, t) as the

5

candidate Lyapunov function and differentiate it with respect to ¢
WED _ 5 [ %o
dt ~ Ja Lot

N 06
= Z/infs(@) ot dx

i=1

N
_ 2( 1. e 22
-3 /Q (6))[Gi6 — o2

N

SE_;/Q (GOCIE]? — o2€2)da
N

Z/ﬂ (6)E (G| — o?da

N
< ;/ﬂ 8 (4:1)& [gm — o |da

<

e

a7

The first inequality is from the fact that & € {—1,0,1}.
The last inequality holds because of the Lemma 1. Therefore,
dV(&,t)/dt is negative definite under the given condition due
to the continuity of &; on e.

Furthermore, if the condition (16) is satisfied, from (17), we
have

V(£ _
i <2 [, eIl - atlde

A

N
—2/962(@)5?[@? — |G |Jda
i=1

(1>

N
_ 206162
;/95 (¢:)& vide

N
_ >, 2(h-)£2
Z /Q 52 ()2 d
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N
_ 5 2( 1\ ¢2
- 1/;/95 (:)E2 dax

—20pV(£,1)

IN

(18)

where 7 € (07 maxg ;) {0422 — |G7;|}).The mean value theorem
is applied to move the v; out of the integral. Note that V' (£, ¢) is in
fact defined as 0.5||¢]|3. Therefore, the system is exponentially
stable with the convergence rate of v = 2vp under the given
condition. |

Remark 1: This theorem gives a sufficient condition for the
existence of a control law that stabilizes the dynamical system
to a given desired steady-state value. Intuitively, the control
law defines a localized input required to change the intrinsic
dynamics of the autonomous system.

B. Label-Error Estimation

In practice, {¢;} is not given or completely available before-
hand. User input based on current segmentation is utilized to
predict/estimate the ideal segmentation on the fly.

1) User Input Processing: User interaction is modeled as
a binary decision as to whether a given location is correctly
labeled as inside or outside the expected segmentation. Let
L ={1,...,N} be the set of labels corresponding to regions
Q; (x). User inputs are properly applied to the image to cap-
ture segmentation errors. Afterwards, the effect of user input is
propagated.

Let Qtfv be the kth user input applied to the ith label at time
t. The user input is modeled as a discrete event

if xe€ thc

k B ) D :
u (@, 87) = {p, if xeQ\Qu (19)

where ¢, p € R are constants that model the instant effect of the
user input.

2) Accumulation of User Input: Let u(x, t) denote the set
of all user input effects at time ¢. For a given label i, let u;
denote the accumulated effect from all u/ (x,t) and u$ be the
effect all uf(x,t), j #4,j=1,...,N and k =1,2,.... The
total effect of user input for label 7, denoted by U; (, t), is given
as a function of w; (x,t) and uS(x,t). As the explicit form of
user input is metric dependent, see (38) and (40) for detailed
definitions.

3) Label-Error Estimation: Let {¢:} be an estimate of
{#!} and define the error terms by

&z, t) = H(¢;) — H())

ev, (x,t) == H(¢}) — H(U;). (20)
The feedback in (11) will use the estimate {¢;}:
00; s
0 = (61 1) + F(6, 615(0)
6i(,0) = ¢ (). 1)

The estimator is an observer-like system driven by accumulated
user input U; with an error term ey, given by

9 A:’K £ e
O~ 6+ £(Un e ))0(3)
07 (2,0) = o (x)
where f (Uq;, ey, ) is a tuning function such that the total label-

ing error V (€,t) := E(t) + V(£, t) has a negative semidefinite
derivative. Here

(22)

N
1

E(t):== E / |Ui|e?, dx (estimator versus user input)
25 e L

(23)

—~

Iy
~

~
I

N
1 A
3 Z / ffdaz (estimator versus visualization)
i=17%
(24)

with § = Uf\zlfl (z,t).

In addition to stabilizing V(é ,t), the control proposed in
Theorem IV.2 is designed to achieve a useful qualitative be-
havior. When the user is satisfied with the agreement between
¢; and their ideal ¢;, it is assumed that U; remains constant;
either the user never needed to apply a correction near x or has
otherwise stopped adding more inputs. In this case, q@f should
follow ¢;. Conversely, when U; grows due to persistent user in-
put, (;ASZ’-‘ is to become increasingly driven toward U; irrespective
of agreement between c;ASf and ¢;. Subsequently, ng* should pull
¢; along due to the coupling term F(¢;, $?) [see (21)] in the
closed-loop dynamics of ¢;.

Theorem IV.2: Notation as in Theorem IV.1. Let f(U;, ey, )
= —|U;|ey, and consequently

O = [6— WUilew,0(G5).
Assume that user input has stopped (U; remains constant). Then,
V(E , 1) has a negative-semidefinite derivative, namely

(25)

VEN =Y [ RENE - Ve Pde. o)
=179

Proof: Computing the time derivative V'(€,t) = E'(t) +
V'(€,t), we obtain

/ N 86[]1-
E(t)zZ/Q\UAeu T
i=1

N ) 8(%:
_;/ |Uilew, (5(@) 5t ) da 27
. N o
V/ ¢ — Ai Ld
(€,t) z; /Q &%
N 8¢L . a(i;k
:;/th [5(@) =005t [ dw. (28)
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(a) (b)

Fig. 3. Example of segmentation errors with (a) user inputs and (b)
propagation of the user input effect.

L. ol 3@2)*
bstituting for — and —*
Substituting for 5 an 5

, We obtain
N ~ ~
B0 =Y [ £@UFE, + e éld @)
)
A A~ ]\/Y A~ A,
V(g t) = Z/ 8% (0:)[Gi& — ol &} )da
i=1 7%

N
_ 2056\ 1E2 - .
;/5;6 (¢z)[£z ‘Uz|€U,§1]dCE (30)

Adding (29) and (30) and combining the 6% (¢¥) terms, we obtain

B0 +V(E0 =Y [ #0)(66 - il

— 2 ”ﬁf A-_ ‘ 9
> /Q PG - Ulew, dz. (31)

When «; satisfies Theorem IV.1, it follows that

N

V(1) < 72/ ()€ — |Uile,]"dx. (32)
i=1 Q2

]

C. Hybrid System: For Efficient User Interactions

Ata given time 7, the regions of current and ideal segmentation
for a given label i, denoted by €2; (x) and (), respectively,
can be represented as

Qi (w) — ngnect(m) U Q;.ndass(gg)
QT (.’B) _ ngrrecl(m) U Q;mreached(m) (33)

where Q£°™!(z) is the correct segmentation, Q% (z) is the
region misclassified as the label i, and Qymeached(z) js the
region not reached by the label i. Note that QI°#(z) is
also an unreached region of other labels. See Fig. 3, where
Qumelass () — Qunreached () and user inputs, Q1 and 1, are
focused on the unreached regions and then propagated. User in-
puts are applied as a sequence of discrete events to the coupled

dynamical system to form a hybrid system, rather than waiting
for their effect to reach current fronts as in [11].

Let P : Q — R be such that H (P (S )) = H(U;(y )) for
a user input applied at €, and t¥. Then, a hybrid system is
formed as the coupled sys%em (21), (25) with a sequence of
discrete events at time tf, k=1,...,

é:(Qtfvtf>
Ay (e t5T) = @7 (i, 157) — i (Que , 1F).

A ( Qe t57) = P(Qy) —

(34)

One simple example of P is P = sign(U;).

Assumption 1: We assume that the size of each unreached
region Qunreached () can be driven sufficiently small (relative to
the level of image resolution) by a finite sequence of user inputs
{Qu } at time tF, k =1,..., K;, where K; is the number of
user inputs for label i.

Remark 2: The rationale for this assumption is based on the
fact that since Qi™e*hed () js compact, then it has a finite sub-

cover, consisting of a finite set {w! } with w! = H(uf(t)) from
the user inputs uf defined in (19). In the extreme case, the user
may manually accomplish the segmentation task with a finite
number of user interactions. Thus, it is reasonable to assume
the existence of a “finite” number of user inputs required for a
desired segmentation. This is of course always true in practice.

Corollary 1V.3: Consider the coupled system (21), (25) with
Assumption 1. Then, the hybrid system (34) has the same sta-
bility properties as the dynamical system defined by (21) and
(25) and, thus, converges to the ideal segmentation.

Proof: Since Theorem IV.2 and Assumption 1 are satisfied,
one has that V' (£, ¢) < 0foralmostall¢ € R™. In addition, there
are only a finite number of discrete events. Thus, the bound of
%4 (f ,1) in (26) still holds for ¢ > ¢k, where ¢ is the last instant
of impulse. Moreover, Assumption 1 ensures that one will get
the desired ideal segmentation. |

Remark 3: The gist of the above result is that if the number
of discrete inputs is finite, then the asymptotic property of the
derivative of the total error V' (£, t) will not be affected by the
discrete impulses. Therefore, the stability of the coupled system
as defined by (21) and (25) does not change with the finite
number of impulses (discrete inputs).

Remark 4: Applying user input immediately to the segmen-
tation process has been empirically used in many interactive
segmentation algorithms [3], [4], [28]. This corollary sheds light
on the rationale of this commonly used strategy from the per-
spective of hybrid systems.

D. Examples of Control-Based Segmentation Methods

Two representative methods are discussed in the following
section.

1) Controlled Region-Based Active Contour Models:
The natural dynamics G;(x,t) described in Section III-A are
used. Given a user input as defined in (19) withp = 1l and g = 0,
the effect of which is strengthened by applying a kernel-based
method [32] to uf to extend it as

ul (z, t57) = ho(d(, 1 )). (35)



ZHU et al.: GUIDING IMAGE SEGMENTATION ON THE FLY: INTERACTIVE SEGMENTATION FROM A FEEDBACK CONTROL PERSPECTIVE

3283

@ )
© O

Fig. 4. Example of the user effect to segment flipper using the region-
based active contour model. Two dolphins are marked as red (label
L = 1) and green (label L = 2), respectively. (a) Before user interaction.
(b) First user input for L = 2, Qt% at time t% and (c) extended effect of

© RS

user input u} (z, )" ) attime 3 *. (d) Propagation of the user input effect
uy (t) and (e) the contours at a later time. (f) One more input ,> for
2

L = 2. (g) Two inputs for L = 1 and (h) the final segmentation.

Here, d(x, )+ ) is the weighted distance from @ to €2,+ defined
in (8), and hgl is a decreasing function with respect to this dis-
tance. In this paper, we use hy = (dmax — d)/(dmax — dmin)>
where d, dy,.x, and d,, i, are the distance and its corresponding
extrema, respectively. The value of d,,, controls the maximal
range the current input affects. The overall effect for label L = 7
is defined as

wi(z,t) = > uf (x,t). (36)
k

To propagate and smooth the effect of the user input, a diffu-
sion process is applied to u;(x,t) as in [11], where

8ui
o = Wi +V- {H((ui/gM)2 — 1)Vui}
u;(x,0) = 0. (37)
The total user input effect is defined as
Ui(x,t) == u;(x,t) — Zuj (z,t). (38)

J#i

Then, we have a region-based method system by plugging U;
into (25) of the hybrid system. An example of segmenting the
dolphin flipper using the proposed method is shown in Fig. 4.

2) Controlled Distance-Based Clustering: In this exam-
ple, we use the simple natural dynamics G; (x, t), as described
in Section III-B. More sophisticated schemes such as [28] may
be employed. The effect of the user input is defined to have the
same metric as the system equations

uf(x,t) = min  min
yeQ, Cel(x,y

>/0 g, (C)IC" (1) dl

uf (s tf) = a0 uf (e, tf) =p (39)

with ¢ = 0 and p = oo, where 0(x,y) is the set of all paths
connecting points « and y, and [ is the parameterization of a
particular path C' weighted by the function g, .

Fig. 5. Example of the user effect to segment flukes using distance-
based clustering. (a) Before user interaction. (b) Inputs for flukes (ma-
genta, label L = 1) and background (yellow, label L = 2). (c) Prorogation
of uy (@, t) from Qz, (dark blue) and (d) us (a2, t) from Qg, (dark blue).
(e) Two inputs for label 2 and (f) the final segmentation.

The total user input effect at point « is computed as

up(y,t) + ur(y,t). (40)

min
up €U, Y=

min
Uy €U, Y=

Ui (il:, t) ==

An illustration of segmenting the dolphin flukes using the pro-
posed distance-based clustering algorithm is given in Fig. 5.

As can be seen from these simple examples, the proposed
algorithm requires only a small amount of user interactions to
correct the segmentations toward ideal boundaries.

E. Implementation

Efficiency is akey factor in determining the performance of an
interactive system. Thus, itis desired to have minimal as possible
computational loads and memory costs in the implementation of
the feedback control system. To this end, inputs to each object
are grouped and evolved by using a single unit/array. That is,
the state of u,(x,t) is recorded by using a single array, and
there are total of NV arrays to keep track of the user input effect.
In addition, depending upon the degree of overlaps between
regions, independent regions of interest may be specified ahead
of time in order to reduce multiple region segmentations into
separate individual binary segmentations. This is a common
case in medical image segmentation where target structures do
not have overlaps (see Fig. 9 for example).

In addition, efficient implementations were employed for the
original automatic methods. Specifically, for the region-based
active contour model, a sparse-level-set implementation [57]
was used that keeps track of ¢(z, t) = 0 without reinitialization.
Furthermore, only five layers, two inside and two outside of
the zero-level set, are required. This reduces the computational
complexity dramatically as the dimension during evolution is of
the same order as the region boundary length/area in the 2-D/3-D
case. In the distance-based clustering formulation, since G is
locally static [see (9)], the evolution reduces to solving a static
Hamilton—Jacobi equation [52]. Thus, distance information can
be computed locally in a monotonic way for which efficient
numerical schemes such as those given in [58] and [59] may be
applied. In this case, only one array is required to keep track of
all uw;(x,t),i=1,..., N, which makes it possible to achieve
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Fig. 6.
segmentations are marked in yellow.

real-time interactive segmentation even for 3-D medical images.
If no user input is employed, the algorithm has a similar structure
as in image segmentation utilizing the fast marching method as
originally proposed in [58] and developed and extended in many
other works; see [51], [52], and [60] and the references therein.
Introducing the control framework enables the algorithm to be
nonstatic and, as such, results in increased flexibility.

V. EXPERIMENTAL RESULTS

In this section, we first present examples of the user effect
for both region-based active contours and distance-based clus-
tering. Then, we demonstrate the advantages (and/or disadvan-
tages) of the proposed control framework by comparing it to a
popular interactive segmentation method in terms of user effort
and predictability. Next, we present results of applying the pro-
posed framework for segmenting challenging medical images.
Finally, we use examples to illustrate the relations between the
control-based method and some existing algorithms.

In this section, the localized region-based active contour en-
ergy [15] was implemented for the region-based active contour
model, and a gradient-based distance measure [19] was used for
the distance-based clustering methodology.

A. Effectiveness of the Proposed Control Framework

1) Selection of Data: Two general images from [61] and
two medical images were employed to quantitatively compare
the presented methods with the popular GrabCut algorithm [3].
The general images considered are given in the first row of
Fig. 6. Specifically, these images were chosen to illustrate strong
local contrast and at varying parts of the image (e.g., ambiguous
boundaries at the bottom of the bird image). The medical images
seen in the second row of Fig. 6 present a different issue—the
targeted object (epiphysis/physis) has an intensity profile that
is comparable to surrounding objects within the background. In
short, the example in Fig. 6 is shown to illustrate and motivate
the proposed framework.

2) Quantitative Comparison of User Effort: A location
through which the cursor was dragged is defined as an “actuated

General (first row) and medical (second row) images used in a quantitative comparison of GrabCut and the proposed algorithm. Manual

voxel,” and the total actuated voxels is a robust indicator of
user effort to complete a segmentation.

In this test, the interactive user input via mouse click-and-drag
was implemented and measured identically for each algorithm.
The extent of the neighborhood around the cursor that marks
seed regions in GrabCut were not counted toward the total ac-
tuated voxels.

Three experiments were conducted with different initializa-
tions for each image. The actuated pixels after initialization
are shown in Fig. 7. At termination, all of the segmentations
have greater than 95% overlap with a manually segmented ref-
erence. These results show the different characteristics of these
algorithms. The proposed algorithm has a lower mean actuated
count in all images and tighter clustering in three of them (ex-
cept the bird image) across repeated segmentations. The wider
cluster in the bird image segmentation from the region-based al-
gorithm is reasonable as it has been observed that region-based
segmentation methods seem to be more sensitive in segment-
ing an object with poor local contrast (preventing the bird’s
tail and claw bleeding through the tree branches) as compared
to the distance-based one. The differences of performance are
significant for medical images, where the background and the
foreground have very similar intensity distribution, since one
iteration of the Grabcut can change the segmentation dramati-
cally. On the contrary, the rapid and continuous visual feedback
provided by the provided algorithm prevents the developing of
a large error, which reduces user’s effort in actuating pixels.

3) Comparison of Algorithmic Predictability: Pre-
dictability of how the segmentation changes in response
to mouse strokes is a criterion for practical ease of use.
Quantitatively, the change of segmentation is measured by
“reclassified” voxels, of which the assigned labels change
between background and foreground. The predictability is
reflected by looking at the dynamic response between user
actuated voxels and reclassified voxels recorded over time as
(#newly actuated voxels, #reclassified voxels).

Fig. 8 shows the dynamic response from the experiments de-
scribed in the previous section. Each mark on the figure corre-
sponds to one iteration when new user input was applied. Linear
regression lines are overlaid on the data. All algorithms have a
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Fig. 7. Comparison of actuated voxels over time, after initialization for (a) surfing, (b) bird, (c) epiphysis, and (d) physis images. The proposed
algorithm has a lower mean actuated pixels across repeated segmentations.
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Fig. 8. Comparison of dynamic response to user input; data points and linear fit lines for (a) surfing, (b) bird, (c) epiphysis, and (d) physis images.

Points below the dashed pink lines indicate wasted user effort, since more additional voxels were actuated than reclassified.
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TABLE |
QUANTITATIVE COMPARISON: MANUAL VERSUS INTERACTIVE APPROACH FOR HEAD—NECK IMAGE SEGMENTATION
Manual segmentation Interactive segmentation Dice
User 1 User 2 User 3
Left eye ball 3min35s 2 min 0.85 0.88 0.84
Right eye ball 3min25s 1 min 30 s 0.87 0.94 0.87
Brain stem 9min?2s 5 min 30 s 0.86 0.85 0.80
Mandible 29 min 37 s 10 min 15°s 0.81 0.90 0.86
Error (mm)
6
i
=6
Ea
Ez
0
Fig. 9. Example of using the region-based method to segment the left eye (red), right eye (green), brain stem (blue), and mandible (pink),

superimposed over manual segmentations (yellow), in axial, coronal, and sagittal views, respectively. The distribution of errors is shown on the right.

very similar dynamic response in the surfing image segmenta-
tion [see Fig. 8(a)], since the image has strong local contrast.
Differences of predictability become observable in the bird seg-
mentation, where the region-based approach has a tighter dis-
tribution along the fitting line because it is less sensitive to the
poor-defined boundaries around the bird’s tail. The advantages
of using the control-based algorithm are shown in the medical
image segmentation. Two issues become apparent for the physis
segmentation. First, the distribution of GrabCut data points is
quite broad; second, some of the GrabCut data points are below
the dashed pink line, indicating a waste of user effort, since
there are more voxels actuated than reclassified. The dynamic
response of GrabCut makes it hard for a user to predict how
much change new mouse strokes will cause.

These comparisons do not mean that the proposed algorithm
will have better performance than other segmentation algorithms
in all cases. On the other hand, we should emphasize that by
forming a closed-loop interactive segmentation system, these
classical algorithms may be robustified, and certain algorith-
mic disadvantages may be overcome relative to their open-loop
implementations.

B. Application to Medical Image Segmentation

The proposed method was tested on real computed to-
mography (CT) volumes. In one experiment, four structures,
left/right eye ball, brain stem, and mandible, involving in
head-neck radiotherapy contouring were segmented from a
CT image. The image size is 512 x 512 x 146 voxels. Due to

the high similarity of target structures to surrounding tissues
and the required precision for the final segmentation result, the
proposed region-based method was chosen in this test based
on its robustness to these factors. To show the difference of in-
trauser performance, three users, who were blind to a reference
manual segmentation, were involved in this test. The details
of this experiment are summarized in Table I. The difference
is obvious when examining the times required to perform
the segmentations. The speedup is roughly 2x according to
Table I. It is also important to notice that the increase in speed
becomes more noticeable for large structures that have intricate
shapes. The users spent significantly more time outlining the
mandible because of its complex boundaries. Additionally, less
concentration from the user is required when guided by the
interactive method, which further reduces the segmentation
time. An example of segmentation is shown in Fig. 9. The
largest error is at the mandible because of the scanning artifacts.
However, the difference in segmentation accuracy is mainly
due to the users understanding of these anatomical structures.
The proposed distance-based method was tested on cardiac
chamber segmentation. Three commonly studied chambers
in cardiac disease diagnosis, i.e., left/right ventricles and left
atrium, were segmented from three cardiac CT images. The
size of image slice along the axial direction is all 512 x 512,
with the number of slices ranging from 243 to 292. The
performance was summarized in Table I1. The proposed method
has over 9x speedup on average, while it maintains close to
0.90 Dice coefficient. The segmentation of the right ventricle
is harder than the other two due the lack of contrast along
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TABLE Il
QUANTITATIVE COMPARISON: MANUAL VERSUS INTERACTIVE APPROACH FOR CARDIAC IMAGE SEGMENTATION

Manual segmentation Interactive segmentation Dice
Left ventricle Right ventricle Left atrium
Case 1 157 min 46 s 18 min 46 s 0.90 0.90 0.89
Case 2 131 min 26 s 13 min 45 s 0.90 0.87 0.92
Case 3 88 min 29 s 13 min 35 s 0.91 0.84 0.93
'/ R
A‘ Error (mm)
A éw
—75
I
E2.5

Fig. 10.

o

Example of using the distance-based method to segment the left ventricle (red), right ventricle (green), and left atrium (blue), superimposed

over manual segmentations (yellow), in axial, coronal, and sagittal views, respectively. The distribution of errors is shown on the right.

the endocardium and the invisibility of the valves between the
right ventricle and atrium. As can be seen from one example
segmentation in Fig. 10, large errors are mostly at where
chamber boundaries become ambiguous.

Note that all the tests were conducted on desktops with stan-
dard CPUs. Indeed, the proposed method has real-time perfor-
mance for real 3-D medical images, taking into account the
factor that the total segmentation time is primarily how long the
user takes to evaluate the current segmentation and apply more
corrective input.

C. Relation to Existing Interactive Algorithms

The proposed control framework may be employed to close
the loop around a number of key existing algorithms. As ex-
amples, the formulations in [9] and [10] can be written as (1).
These two methods were applied to segment the epiphysis and
physis images with different As, each with three experiments.
As shown in Fig. 11, many more user inputs are required if A
is small, while large A can also increase user’s input as it has
a similar effect of excessive input (see [11]). Note that a large
input was required in segmenting the physis using the method
[10] because user input is only applied after the automatic seg-
mentation is finished; thus, it cannot prevent large errors from
occurring. While it is by no means a definitive comparison,
the different characteristics of these algorithms were observed
by looking at the minimum average efforts used in segment-
ing these structures (152, 196, and 120 pixels in epipysis and
169, 404, and 140 in physis, respectively, for [9], [10] and the
proposed method).

2400 : : ,
——epiphysis: method [12]
=—0—physis: method [12] |
—8—epiphysis: method [13]|
=A—physis: method [13]

2301

22001

average user effort

A: weight of user input

Fig. 11.  Average user’s effort of methods [12] and [13] with varying A
for the segmentation of epiphysis and physis.

Another feature of the control-based framework is the sys-
tem’s robustness to “noisy” user inputs (see Fig. 12). This is a
property inherited from the feedback control design principle
that allows admissible input variations [6].

For some distance-based interactive segmentation algorithms
such as [28], the type of discrete input described in (34)
was implicitly used to model the user interactions. There are
other algorithms that may be formulated within the proposed
framework. For instance, the algorithm presented in [4] may



3288

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 10, OCTOBER 2018

Fig. 12. Robustness of the control-based system with respect to “noisy”
user input. (a)—(c) User input for the right segmentation. (d)—(f) System
response to “noisy” user input (inside blue region).

be reformulated as a minimal path problem, thereby naturally
fitting into the distance-based clustering case.

VI. CONCLUSION

This paper has presented a systematical way of applying con-
trol theory to analyze and design an interactive image segmenta-
tion algorithm. As an extension of [11], the new formulation has
wider applications and stronger stability conditions. In partic-
ular, the proposed method supports both region- and distance-
based metrics, handles multiple-object segmentation, and works
for both scalar and vector images. The concept of impulsive con-
trol was adopted to model user interactions, which justifies the
rationale of a widely used empirical strategy from the perspec-
tive of feedback control. In addition, conditions for asymptotic
and exponential stability are derived, covering different levels
of stability requirement.

The experimental results show the effectiveness of adding the
proposed control structure to two representative classical meth-
ods. Since user’s role is seamlessly integrated into a feedback
control system, a large error can be prevented from developing
and user’s effort to corrections is guided by the stability condi-
tion. Though the examples used in this paper are based on the
level-set formulation, the design principle is generalizable to
other interactive segmentation systems that can be described by
dynamical systems. It is extensible to discrete systems as well.
The focus of this paper is on adopting control theory into image
segmentation. There are other factors that determine the per-
formance of an interactive segmentation system. One important
topic is informative and efficient visualization to allow effective
user interaction [62]. Simple user scribbles or predefined regions
were used in the proposed example algorithms. It becomes vi-
tal to have more effective user interactions for large-scale 3-D
image volumes.
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