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Abstract. In this work, we propose to utilize discrete graph Ricci flow
to alter network entropy through feedback control. Given such feedback
input can “reverse” entropic changes, we adapt the moniker of Maxwell’s
Demon to motivate our approach. In particular, it has been recently
shown that Ricci curvature from geometry is intrinsically connected to
Boltzmann entropy as well as functional robustness of networks or the
ability to maintain functionality in the presence of random fluctuations.
From this, the discrete Ricci flow provides a natural avenue to “rewire” a
particular network’s underlying geometry to improve throughout and re-
silience. Due to the real-world setting for which one may be interested in
imposing nonlinear constraints amongst particular agents to understand
the network dynamic evolution, controlling discrete Ricci flow may be
necessary (e.g., we may seek to understand the entropic dynamics and
curvature “flow” between two networks as opposed to solely curvature
shrinkage). In turn, this can be formulated as a natural control problem
for which we employ feedback control towards discrete Ricci-based flow
and show that under certain discretization, namely Ollivier-Ricci curva-
ture, one can show stability via Lyapunov analysis. We conclude with
preliminary results with remarks on potential applications that will be a
subject of future work.
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1 Introduction

In the current technological world, we increasingly depend upon the reliability,
robustness, quality of service and timeliness of exceedingly large interconnected
dynamical systems including those of power distribution, biological, transporta-
tion, and communication [1]. Over the past twenty years, we have witness a dra-
matic rise of information in which the analysis of such systems invariably present
challenging “big data” complexity issues. For example, in transferring resources
and information, a key requirement is the ability to adapt and reconfigure in
response to structural and dynamic changes while avoiding disruption of service.
In turn, exploiting functional properties such as robustness and heterogeneity
(redundancy) are key to maintaining control and avoiding shotgun-based solu-
tions during “black swan” events in which the continuous failing of interacting
agents may result in catastrophic system failure.
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Fig. 1. Motivated by Maxwells “Demon”, this work focuses on altering network entropy
via Ollivier-Ricci flow whereby the “intelligent being” is a feedback operator.

As such, we have previously developed fundamental relationships between
network functionality [3, 4] and certain topological and geometric properties of
the corresponding graph [5, 6] to show that the geometric notion of curvature
(a measure of “flatness”) is positively correlated with network entropy and sys-
tem’s robustness or its ability to adapt to dynamic changes [7, 8]. This can be
seen in Figure 1. In this regard, network curvature may relate to anomaly de-
tection, congestion in communication, to drug resistance. On the other hand,
network entropy has often been chosen as a measure of network functional ro-
bustness [3, 9]. From this, if one is able to define such statistical properties over
the graph that are proxies for functionality, then a natural progression would
be to define corresponding theoretics in order to alter the networks behavior
through such properties and for which in this note, we consider curvature and
entropy. To this end, we focus on developing the necessary conditions to con-
trol network (curvature) entropy through the discrete Ricci flow. This flow in
the graph setting has been proposed for congestion management, managing sys-
temic risk [8], simulating biological resistance [7], as well as a generalized tool
for network comparison [10, 11]. This said, the discrete Ricci flow for networks
presents notable issues in that it not only reduces regions of negative curvature,
but also reduces areas of highly positive curved regions. In the context of in-
ducing network fragility (or vice versa), this may not be suitable as increases
in negatively curved regions curvature relates to increases in entropy and subse-
quently network robustness. Further, in understanding network dynamics, one
may want to “drive” the discrete flow between two networks [10, 11] as well as
in augmented fashion for which one “pins down” the flow on regions considered
“undruggable.” The remainder of this note is outlined as follows: The next sec-
tion provides preliminaries in motivating the theoretical need of understanding
geometry as it pertains to functionality. From this, Section 3 lays the foundation
of our framework for which we present the corresponding control laws and prove
stability in the sense of Lypanuv. Then, Section 4 presents preliminary results
on synthetic networks for illustration of theory. We conclude with a summary
and future work towards applications in Section 5.
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2 Preliminaries: Entropy and Curvature

To illustrate how geometry elucidates the functional behavior of a dynamical
system, let us revisit optimal mass transport (OMT) [16]. The first notion of
OMT was proposed by Gaspar Monge in 1781 with the concern of finding the
minimal transportation cost for moving a pile of soil from one site to another.
The modern formulation, given by Kantorovich, has been ubiquitously used in
fields of econometrics, fluid dynamics, to shape analysis [16, 17] and recently, has
received a renewed mathematical interest. More formally, let (X,µ0) and (Y, µ1)
be two probability spaces and let π(µ0, µ1) denote the set of all couplings on
X × Y whose marginals are µ0 and µ1. As such, the Kantorovich costs seeks to
minimize

∫
c(x, y)dπ(x, y)∀π ∈ π(µ0, µ1) where c(x, y) is the cost for transport-

ing one unit of mass from x to y. The cost originally defined in a distance form
on a metric space leads to the Lp Wasserstein distance as follows:

Wp(µ0, µ1) :=

(
inf

µ∈π(µ0,µ1)

∫ ∫
d(x, y)pdµ(x, y))

) 1
p

. (1)

From this, let us begin considering M to be a Riemannian manifold such that

P :=
{
µ ≥ 0 :

∫
µ dvol(M) = 1

}
TµP :=

{
η :

∫
η dvol(M) = 0

}
(2)

as the space of probability densities and the tangent space at a given point µ,
respectively. Due to the work of Benamou and Brenier [17], one can naturally
compute the geodesic (in the Wasserstein sense) between two densities µ0, µ1 ∈
P as the below optimal control problem:

inf
µ,g

{∫ ∫ 1

0

µ(t, x)‖∇g(t, x)‖dtdvol(M)

subject to
∂u

∂t
+ div(µ∇g) = 0

µ(0, .) = µ0, µ(1, .) = µ1

} (3)

which leads us to give P a Riemannian structure due to the work of Jordan et.
al [19]. From this, we can now consider Boltzmann entropy as

H(µt) :=

∫
M

logµtdvol(M) (4)

where the dependency on x has been dropped for convenience and we consider a
family of densities evolving over time. Taking the second variation with respect
to time t in the Wasserstein sense (i.e., rather than the Euclidean norm) and
noting that, by construction, η := ∂µ

∂t |t = 0, we have

d2

dt2
H(µt)|t=0 = 〈Hess(H)(η), η〉W

= −
∫
M

〈∇gη,∇∆gη〉+
1

2
∆
(
‖∇gη‖2

)
µ0dvol(M) (5)
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where µ0 and gη satisfy (3). Using the Bochner formula [22], which relates har-
monic functions on a Riemannian manifold to Ricci curvature (herein denoted
as “Ric”), we can further assume Ric ≥ kI as quadratic forms where k is a
constant and I is the identity matrix. Then, due to Sturm [21] as well as Lott
and Villani [16], one can show that the Hess(H) is k-convex:

H(µt)≤ tH(µ0)+(1− t)H(µ1)− φ(k, t, µ0, µ1)∀t ∈ [0, 1] (6)

where the right hand portion φ(.) can be shown to be φ(k, t, µ0, µ1) = k
2 t(1 −

t)W2(µ0, µ1)2 allowing for k-convexity. That is, changes in entropy and curva-
ture are positively correlated, i.e., ∆H × ∆Ric ≥ 0. Furthermore, through the
Fluctuation Theorem [3], one may relate network robustness R to entropy; i.e.,
∆H×∆R ≥ 0 as well as Ricci curvature ∆Ric×∆R ≥ 0 - see [3, 7, 8] for details.

3 Proposed Framework

In this section, we propose a feedback based approach to control discrete Ricci
flow over graphs due to a discretization by Ollivier [5, 6] which is discussed next.

3.1 Open-Loop View: Discrete Ollivier-Ricci Flow

While Ricci curvature relates to functionality, we require a discrete definition for
networks. Here, we focus on the Ollivier formulation [5] given its relationship to
the Wasserstein distance, but refer to the reader to several works in this open
problem area of varying discretizations including, but not limited to, Forman
curvature [11, 12], Bakery Emery [14] as well as recent comparisons [13, 14]. This
said, we can define Ollivier-Ricci curvature between any two nodes x and y as:

κ(x, y) := 1−W1(µx, µy)/d(x, y). (7)

This definition, motivated by coarse geometry, is applicable to the graph setting
whereby the geodesic distance d(x, y) is given by the hop metric. From this, we
can define the Ollivier-Ricci flow with an initial condition µ0(x, y) = φ0(x, y) as:

d

dt
µt(x, y) : = −κ(x, y)µt(x, y) (8)

where µt(x, y) (with an abuse of notion) is the normalized edge weights, i.e.,
µt(x, y) ∈ [0, 1]. Here, we can treat this flow as an open-loop control problem
[15] for which the “dynamics” to be controlled is Ollivier-Ricci curvature κ(x, y).
In particular, motivated philosophically by Maxwell’s Demon [18], we seek to
characterize an “intelligent being” to control entropy via discrete Ricci flow.

3.2 Control Law Construction and Existence

To begin developing our control-based approach, let us redefine the above flow
as a closed-loop problem with the following form given as:

d

dt
µt(x, y) =

[
− κ(x, y) + ψ(µt, µ

∗)
]
µt(x, y) (9)

µ0(x, y) = φ0(x, y)
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where limt→∞ µt(x, y)→ µ∗(x, y) and where ψ(µ, µ∗) is the control law whereby
the system is stable in the sense of Lypanuv (e.g., inputs “near” equilibrium stay
or decay towards equilibrium). Here, we assume µ∗(x, y) is ideal and for which
there exists no error; i.e., we want the flow to converge entirely to such an end
(network) point. To do so, let us further define the point-wise and total error as

δt(x, y) := µt(x, y)− µ∗(x, y) (10)

Σt(δt) :=
1

2

∑
x

∑
y

||δt(x, y)||2. (11)

Given this, we are now able to show the existence of a regulatory control.

Theorem III.1. The control law that stabilizes the closed-loop system in equa-
tion (9) from µt(x, y) to µ∗(x, y) is given by:

ψ(µ, µ∗) = β2
t (x, y)δt(x, y) (12)

where β2(x, y) ≥ 2 and δt(x, y) is given by equation (11).

Proof: Let us first note that δt(x, y) is bounded, i.e., −1 ≤ δt(x, y) ≤ 1 and
that −2 ≤ κ(x, y) ≤ 1. From this, we choose Σt as the candidate Lyapunov
function and differentiate it with respect t which yields the following:

dΣt
dt

=
∑
x,y

δt(x, y)· ∂δt(x, y)

∂t

=
∑
x,y

δt(x, y)·
[ ∂
∂t
µt(x, y)− ∂

∂t
µ∗(x, y)︸ ︷︷ ︸

0

]
=
∑
x,y

δt(x, y)·
[
− κ(x, y)− β2

t (x, y)δt(x, y)
]
µt(x, y)

≤
∑
x,y

[
|κ(x, y)|δ2t (x, y)− β2

t (x, y)δ2t (x, y)
]
µt(x, y)

≤
∑
x,y

δ2t (x, y)
[
2− β2

t (x, y)
]
µt(x, y)

≤ 0

We note that while the above control law is due to the reliance on bounds
of Ollivier-Ricci curvature, this will not hold for other discretizations such as
Forman curvature [10, 11]. We have also assumed that one not only has an ideal
representation of the corresponding network configuration µ∗(x, y), but the input
is error-free and there are no modifications by a “demonic” operator during the
entropic (Ricci) flow, e.g., impose node constraints. This is discussed next.

3.3 “Non-Perfect Demonic” Input

We are now ready to define an estimator and observer-like framework for which
an input may begin to control graph curvature and subsequently control net-
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work entropy. This can be akin to the thought experiment proposed by James
Maxwell for which the “demon” seeks to violate the second law of thermodynam-
ics, namely alter entropy [18]. Here, we assume there exists error from both the
demon (and end targeted) state as well as the chosen (Ollivier-Ricci) flow model.
As such, let us define µ̂∗t (x, y) as the estimate of the ideal knowledge µ∗(x, y)
with corresponding error terms associated with the demon and the model as

δ̂t(x, y) := µt(x, y)− µ̂∗t (x, y) (Type I Error)

γt(x, y) := µ̂∗t (x, y)− λt(x, y) (Type II Error)

where λt(x, y) :=
∑l=k
l=0 ε

k
t (x, y) and εkt (x, y) := ±p (constant) are the k input at

time t. From this, the total error for the above Type I / II errors can be seen as:

Σ̂t(x, y) :=
1

2

∑
x

∑
y

||δ̂t(x, y)||2 (13)

Γt(x, y) :=
1

2

∑
x

∑
y

|λt(x, y)|||γt(x, y)||2. (14)

Theorem III.2. Let us assume input has stopped and further assume the above
total label errors defined for Type I/II error, then the following flow

d

dt
µ̂t(x, y) =

[
δ̂t(x, y) + Φ(λt, γt)

]
µ̂t(x, y) (15)

µ̂0(x, y) = φ0(x, y)

where Φ(λt, γt) = −|λt(x, y)|γt(x, y) provides an estimator such that the total
error Vt(x, y) := Σ̂t(x, y) + Γt(x, y) has a negative semi-definite derivative. In
turn, this provides a stable coupled feedback system together with equation (9)
where the ideal configuration µ∗(x, y) is replaced with an estimator µ̂∗t (x, y).

Proof: Computing the total error Vt(x, y) := Σ̂t(x, y)+Γt(x, y) and dropping
the spatial dependency (for reading ease), yields the following:

∂Vt
∂t

=
∑
x,y

δ̂t ·
∂δ̂t
∂t

+ λtγt
∂µ̂t
∂t

=
∑
x,y

δ̂t ·
[
∂µt
∂t
− ∂µ̂t

∂t

]
+ λtγt

∂µ̂t
∂t

=
∑
x,y

δ̂t
∂µt
∂t
− δ̂t

∂µ̂t
∂t

+ λtγt
∂µ̂t
∂t

=
∑
x,y

δ̂t
∂µt
∂t︸ ︷︷ ︸
≤0

−∂µ̂t
∂t

[
δ̂t − λtγt

]

≤ −∂µ̂t
∂t

[
δ̂t − λtγt

]
≤ 0
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Fig. 2. We present results on scale-free networks of varying node sizes and the impact
of operator input in “injecting” curvature of a single node associated with the highest
topological degree. (A) Average Ollivier-Curvature. (B) Average Network Entropy.
Note: Due to scaling, values for curvature and entropy differ; however, ∆H×∆Ric ≥ 0

As one can see from coupling both the estimator and autonomous model, a
useful qualitative behavior emerges. In particular, when the “demon” is satisfied
with the agreement between µt(x, y) and their ideal µ∗(x, y) configuration, it
is assumed that the total input λt(x, y) will then remain constant. That is,
either the “demon” never needed to apply a correction or has otherwise stopped
providing inputs. Nevertheless, in this case, µ̂∗t (x, y) should “follow” µt(x, y).
On the other hand, when the total input error λt(x, y) grows due to persistent
input, µ̂∗t (x, y) will be increasingly driven towards λt(x, y) irrespective of the
agreement between µ̂t

∗(x, y) and µt(x, y). Ultimately, the demon has control of
the seemingly accurate autonomous flow and can override systems actions.

4 Results

In this section, we present results using graph curvature to indirectly control
network entropy. We caution the reader that these results are preliminary and
to motivate theory presented. This said, we conduct experiments primarily fo-
cused involve scale-free networks as it provides natural topological hubs to test
particular inputs can impede (induce fragility) via varying levels of input. For
all experiments, we generate networks via the Python NetworkX package and
utilize the classic definition of network entropy [9].

The first set of experiments focuses on controlling network entropy via dis-
crete Ollivier-Ricci flow seen in Figure 2. As there exists an intimate connection
that relates that changes in entropy are positively correlated with changes in
Ricci curvature, i.e., ∆H×∆Ric ≥ 0, we generate scale-free networks with node
sizes of n = [100, 200, 400, 600] with uniform edge weights. From this, we target
the node with the highest degree and begin “injecting” input and allow for our
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Fig. 3. We present results on scale-free networks of node size n = 200 and the impact
of operator input at varying levels of p from t = 100 to t = 200 for the node associated
with the highest topological degree. (A) Average Ollivier-Ricci Curvature. (B) Average
Network Entropy. Note: The degree of operator input naturally controls (increases)
both curvature and entropy in the aforementioned time region.

flow to evolve as described by the coupled feedback equations in equation (9)
and equation (15). To be more precise, at time t = [30, 75, 120, 175] we make
an input of values p = [−2, 2, 4,−4], respectively. The resulting changes in net-
work entropy as well as average Olliver-Ricci curvature can be seen as solid
colored lines in Figure 2. Remarkably, we see a very close relationship between
network entropy and that of network curvature. Furthermore, to validate our
ability to “change direction” in terms of altering network entropy, we re-run the
same experiment with a slight change by “turning off” input at t = 120; i.e., for
t = [30, 75, 120, 175] we make an input of values p = [−2, 2, 0, 0], respectively.
Once again, we see the natural impact and differences of operator input. On the
other hand, we also want to measure how the degree of input (e.g., choosing the
constant p) alters networks entropy as well as the impact of altering more than
one hub node in a given network. To this end, we generate scale-free networks
of node size n = 200. From this, at time t = [30, 75, 100, 200] we make an input
of values p = [−2, 2, θ,−θ] where θ = [5, 4, 3, 2, 1]. As one can see from Figure
3, we see exactly this behavior which also correlates to the degree of operator
input. Next, we make a slight alteration to this experiment and now at iterations
[30, 75, 100, 200], we make an operator input of values p = [−2, 2, 4,−4] similar
to the first experiment for a scale-free network of node size n = 400. However,
we now plot changes in network entropy and network curvature as a function
of altering the top n nodes with the highest degree. Again, we see the behavior
that is to be expected in increasing network robustness as seen in Figure 4. For
this experiment, Figure 5 shows Type I and Type II error for completeness.
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Fig. 4. We present results on scale-free networks of node size n = 400 and the impact
of providing operator input to several nodes associated with the highest topological
degree. (A) Average Ollivier-Ricci Curvature. (B) Average Network Entropy. Note: The
number of nodes an operator interacts with naturally controls (increases/decreases)
both curvature and entropy.

5 Conclusions and Future Work

We propose a network control framework that couples the discrete Ollivier-Ricci
flow with operator input from a feedback perspective. To this end, we provide
the necessary stability conditions in the sense of Lyapunov. This said, there
exists several avenues that we are currently pursuing. The above framework
has potential biological application towards the real-world setting in which we
often seek to understand how can induce fragility on targets that are deemed
“undruggable” [7]. We also aim to extend the above framework for non-constant
user input, time-delayed response, and as applied to specific application domains.
As such, this work has laid the foundation for which further examination is
needed.
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