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Abstract— More than half of all cancer patients receive
radiotherapy in their treatment process. However, our under-
standing of abnormal transcriptional responses to radiation
remains poor. In this study, we employ an extended definition
of Ollivier-Ricci curvature based on L1-Wasserstein distance to
investigate genes and biological processes associated with ioniz-
ing radiation (IR) and ultraviolet radiation (UV) exposure using
a microarray dataset. Gene expression levels were modeled on a
gene interaction topology downloaded from the Human Protein
Reference Database (HPRD). This was performed for IR, UV,
and mock datasets, separately. The difference curvature value
between IR and mock graphs (also between UV and mock)
for each gene was used as a metric to estimate the extent
to which the gene responds to radiation. We found that in
comparison of the top 200 genes identified from IR and UV
graphs, about 20∼30% genes were overlapping. Through gene
ontology enrichment analysis, we found that the metabolic-
related biological process was highly associated with both IR
and UV radiation exposure.

I. INTRODUCTION

Approximately 60% cancer patients receive radiother-
apy in the treatment process [1]. Radiation-induced toxicity
is a common side effect for patients treated with radiotherapy.
Therefore, it is important to find the biological processes
implicated in radiation to develop personalized treatment for
those who are predicted as being at high risk of developing
radiation-induced side effects. Oh et al. surveyed many pub-
lished studies that had shown associations between genes and
radiation exposure, and summarized a list of 221 radiosen-
sitive genes and the corresponding biological processes [2].
Eschrich et al. proposed a linear regression predictive model
of cellular radiosensitivity using the 10 hub genes from the
top 500 genes identified by a univariate linear regression
[3]. Jen and Cheung assessed transcriptional response of
lymphoblastoid cells to ionizing radiation (IR) at various
time points with 3 Gy and 10 Gy of ex vivo IR exposure [4].
They found that the higher radiation dose exposure induced
transcriptional changes in a more number of genes. Popanda
et al. performed a literature review to identify radiorespon-
sive single nucleotide polymorphisms (SNPs) associated with
irradiation [5]. Andreassen and Alsner summarized studies
that had reported associations between genetic variants and

normal tissue complications in various cancers and proposed
an allelic architecture model that shows relative risk for
genetic variants associated with normal tissue radiosensi-
tivity [6]. Rieger and Chu investigated radiosensitive genes
and biological processes associated with IR and ultraviolet
radiation (UV) using cell lines from 15 individuals [7].

In this study, we reanalyze this dataset by employing
an extension of the notion of Ricci curvature to the case
of weighted graphs known as Ollivier-Ricci curvature, and
apply this to study a gene interaction topology. We rank
genes based on the curvature difference relative to mock after
IR and UV treatment and perform gene ontology enrichment
analysis to identify significant radiosensitive biological pro-
cesses.

Our motivation for employing curvature to study cancer
comes from the recent work of modeling various biological
systems as complex networks. In general, the growing impor-
tance of studying complex networks has been documented in
a huge and growing literature, and has even been referred to
as the field of network science [8]. In particular, as argued in
various works (see [9] and the references therein), the onset
and proliferation of cancer stems from dynamic changes
that result from a series of changes in cellular interactions
governing a complex network. As described in [10], there is a
strong relationship between network functionality in terms of
robustness and topological and geometric properties of net-
works such as curvature. One of the key ideas underpinning
the present study, is based on the positive correlation between
an increase of curvature and network functional robustness.
Since a fundamental hurdle to cancer therapy is to acquire
tumor robustness, it is essential to quantify the robustness
of cancer networks in some easily computable manner. The
notion of curvature as described below, turns out to be a
powerful technique for accomplishing this purpose.

II. CURVATURE

In the theory of differential geometry, curvature is the
amount by which a geometric object deviates from being
flat. Ricci curvature is a notion of curvature that captures



this change along some specific direction. In [11], Ollivier
extended the concept of Ricci curvature to general metric
measure spaces, in particular, weighted graphs. This is of
great interest to us since the graph may represent gene
regulatory networks or other biological networks. Next we
describe the Ollivier notion of curvature on graphs.

Ollivier curvature relies on the Wasserstein distance,
which is a metric based on the theory of optimal mass
transport problems [12], [13]. Let X be a metric measure
space equipped with distance d. On a graph G = (V, E) with
nodes V and edges E , one can simply choose the distance d
as the hop distance. That is, the distance between two nodes
x, y ∈ V is given by the minimum of number of hops to go
from x to y or vice versa. Given two probability measures
µ, ν on X with finite p-th (1 ≤ p < ∞) moments, one can
define the Lp Wasserstein distance between µ and ν as

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)pdπ(x, y)

)1/p

,

where Π(µ, ν) denotes a set of all joint probability measures
on X×X whose marginals are µ and ν. This means that the
Wasserstein distance is associated with the minimum cost of
moving mass distributed according to µ, to mass distributed
according to ν, when the cost of moving unit mass from x to
y is d(x, y)p. In most applications, p = 1, 2 were used, and
following [11], we will take p = 1. This is also known as the
Earth Mover’s Distance (EMD) [14]. We note that when the
initial and terminal mass concentrate on x and y respectively,
i.e., µ = δx, ν = δy , then Wp(µ, ν) = d(x, y). The Ollivier-
Ricci curvature captures the change of transportation cost
after adding small diffusions to the mass distributions. If we
attach to each point x ∈ X a probability measure µx, which
corresponds to the diffusion at x or “fuzzifying” the point
x, then the Ollivier-Ricci curvature is defined as

κ(x, y) = 1− W1(µx, µy)

d(x, y)
.

When the curvature is positive, W1 is less than d, which
implies that a small diffusion would help to reduce the
transportation cost. On the other hand, if the curvature is
negative, then W1 is greater than d, which implies that
diffusion would increase the transportation cost. Let G =
(V, E) denote a weighted undirected graph with vertices
V and edges E . Let wxy denote the weight of the edge
(x, y) ∈ E . We assume that wxy is positive. For any pair of
points x and y that are not directly connected on the graph,
we define wxy = 0. We define a probability measure µx for
a given node x ∈ V by

µx(y) =
wxy
dx

,

dx =
∑
y

wxy.

Namely, the mass at x spreads to the neighbors of x, and
the amount of mass is proportional to the weight between
them. The Ollivier-Ricci curvature Ric and the entropy S

are closely related. It was established in [10] that they are
actually positively correlated, namely,

∆S ×∆Ric ≥ 0.

Furthermore, via the Fluctuation Theorem [15], [16], [17] en-
tropy and robustness, the latter denoted by R, are positively
correlated, namely,

∆S ×∆R ≥ 0.

Therefore, one deduces the positive correlation

∆Ric×∆R ≥ 0

between the curvature Ric and the robustness R follows (see
[10] for more details). The intuition behind this is that graphs
with higher curvature will have more alternative ways to
transport mass or information from one node to another,
meaning that the possible damage caused by a random
perturbation will be smaller, and therefore the network will
be more robust. Further, from the above discussion, higher
curvature is an indication of greater heterogeniety, another
hallmark of cancer.

Based on the Ollivier-Ricci curvature, we can define a
scalar curvature for each node x ∈ V as the sum over all the
Ricci curvature values between x and its neighbors, namely,

η(x) :=
∑
y∈Nx

κ(x, y),

where Nx is a set of nodes that are directly connected
to x. To avoid the bias induced by the topology, one can
also incorporate the weights and define a scalar curvature
as ηw(x) :=

∑
y∈Nx

wxyκ(x, y). Note that unlike κ which
gives a value to each pair of interaction, the scalar curvature η
assigns a value to each node. Therefore, it provides a possible
way to compare different genes on a network since each gene
corresponds to a node.

III. MATERIALS AND METHODS

To investigate transcriptional responses to radiation, we
analyzed a gene microarray dataset (GSE1977) downloaded
from the Gene Expression Omnibus (GEO) repository, which
consisted of gene expression levels of ∼10000 genes for
45 samples: lymphoblastoid cell lines collected from 15
healthy individuals (mock group), 15 IR-treated samples
(IR group), and 15 UV-treated samples (UV group). For
detailed information, refer to [7]. The network topology
was constructed using gene interaction information derived
from the Human Protein Reference Database (HPRD) [18].
After incorporating the gene expression data, and discarding
redundant genes, a final graph consisted of 5568 nodes
(genes) and 23689 edges (interactions). For each of the three
treatments (mock, IR, and UV), we computed the Pearson
correlation cxy between two connected genes (x and y)
and assigned a non-negative weight wxy = (1 + cxy)/2
on the edge (x, y) ∈ E . With this weighting strategy,



TABLE I: Top ranked genes based on the curvature changes after IR and UV treatment. +: positive difference; −: negative
difference.

IR UV
Ranking Gene + Gene - Gene + Gene -

1 TP53 2.550 MYC -2.091 CALM1 2.348 AR -2.261
2 UNC119 1.898 PRKACA -1.886 TSNAX 2.232 MET -1.672
3 RPS6KB1 1.825 PIK3R1 -1.725 JUN 2.109 YWHAQ -1.662
4 SMAD3 1.556 POU2F1 -1.567 EP300 2.078 MAPK3 -1.503
5 GNB2L1 1.464 RAF1 -1.564 TP53 2.005 HRAS -1.448
6 NCOA6 1.320 CDK5 -1.540 ERBB2 1.831 PPP3CA -1.403
7 CDK1 1.300 MET -1.477 EEF1A1 1.611 IRS1 -1.380
8 NFKBIB 1.141 PTK2 -1.420 SMAD4 1.571 MYC -1.365
9 CHD3 1.138 PTPN11 -1.330 SMAD1 1.550 CRMP1 -1.319

10 HTT 1.138 VAMP2 -1.312 SMAD3 1.505 NR2F1 -1.272
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Fig. 1: Sorted curvature values in ascending order. Left: cur-
vature differences between mock and IR graphs (mock−IR)
and right: curvature differences between mock and UV
graphs (mock−UV) for all genes.

we built 3 different graphs (G1,G2, and G3) on the same
topology, but with different weights for the mock, IR, and
UV groups, respectively. We computed the scalar curvatures
for all genes on the network topology. After that, for each
gene, we computed the curvature difference between IR
and mock graphs, and between UV and mock graphs. The
absolute difference value was used as a metric to assess the
extent to which each gene responds to radiation. Based on
the curvature difference, we ranked genes and performed
gene ontology enrichment analysis using a curated database
(MetaCore, Thomson Reuters).

IV. RESULTS

We computed the scalar curvatures on the 3 graphs and
assessed the curvature change for each gene after IR and UV
radiation, i.e, mock−IR and mock−UV. As shown in Figure
1, overall the differences were small for most of the genes
in response to IR and UV treatment. Only a small portion of
genes showed significant changes in curvature. We selected
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Fig. 2: Faction of overlapping genes between IR and UV
treatment. Left: the top 100 genes with a curvature decrease
(positive curvature difference) and right: the top 100 genes
with a curvature increase (negative curvature difference).

the top 200 genes with the most significant changes: the top
100 genes with a curvature increase (negative difference)
relative to mock results and another top 100 genes with
a curvature decrease (positive difference). Increasing the
number of the top ranked genes from 10 to 100 in steps of
10, we compared these genes to investigate how many genes
responded to both UV and IR treatment. As can be seen
in Figure 2, about 20∼30% percent genes were overlapping
with a slightly higher percentage for genes with the negative
curvature difference. Table I shows the top 10 genes with the
most significant curvature changes after IR and UV treatment
for the positive difference and negative difference, separately.
For IR treatment, TP53 and MYC were top-ranked, whereas
for UV treatment CALM1 and AR were top-ranked with
respect to the positive and negative difference, respectively. It
should be noted that in our previous research [2], MYC gene
was found to be the most significant radiosensitive gene. The
confirmation using the Ollivier-Ricci curvature approach in
this study implies that MYC appears to play a crucial role in
radiation-induced biological processes. We performed gene



Fig. 3: Gene ontology enrichment analysis using the top 200 genes associated with IR treatment.

Fig. 4: Gene ontology enrichment analysis using the top 200 genes associated with UV treatment.



ontology enrichment analysis with the top 200 genes using
the MetaCore. Figures 3 and 4 show the top 10 biological
processes for IR and UV treatment, respectively, resulting
from the MetaCore analysis. Interestingly, the metabolic-
related process was top-ranked in both treatments, implying
that there may be common biological processes in response
to both IR and UV radiation.

V. CONCLUSION

We employed a graph-based curvature concept to iden-
tify radiosensitive genes and biological processes using a mi-
croarray dataset. Using the idea that the change of robustness
of a biological network after radiation treatment is positively
correlated with the network curvature, we computed the cur-
vature differences between mock and IR or UV treatment for
all genes and used the difference value as a metric to assess
the degree to which each gene responds to radiation. It was
found that about 20∼30% genes among the top-ranked genes
responded to both IR and UV radiation. Despite the relatively
low overlapping fraction, the metabolic-related process was
top-ranked in both IR and UV treatment, suggesting that the
key biological processes associated with IR and UV radiation
exposure appear to be similar. However, a further evaluation
on larger datasets is needed to elucidate these observations.
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